
Kopf

Sergey Vasilyev

Apr 08, 2024

FIRST STEPS:

1 Installation 1

2 Concepts 3

3 Sample Problem 5
3.1 Problem Statement . 5
3.2 Problem Solution . 5

4 Environment Setup 7

5 Custom Resources 9
5.1 Custom Resource Definition . 9
5.2 Custom Resource Objects . 10

6 Starting the operator 11

7 Creating the objects 15

8 Updating the objects 17

9 Diffing the fields 21
9.1 Old & New . 21
9.2 Diffs . 22

10 Cascaded deletion 23

11 Cleanup 25

12 Handlers 27
12.1 Events & Causes . 27
12.2 Registering . 27
12.3 Event-watching handlers . 28
12.4 State-changing handlers . 28
12.5 Resuming handlers . 29
12.6 Field handlers . 30
12.7 Sub-handlers . 30

13 Daemons 33
13.1 Spawning . 33
13.2 Termination . 34
13.3 Timeouts . 34
13.4 Safe sleep . 35

i

13.5 Postponing . 36
13.6 Restarting . 36
13.7 Deletion prevention . 37
13.8 Resource fields access . 37
13.9 Results delivery . 37
13.10 Error handling . 38
13.11 Filtering . 38
13.12 System resources . 39

14 Timers 41
14.1 Intervals . 41
14.2 Sharpness . 41
14.3 Idling . 42
14.4 Postponing . 42
14.5 Combined timing . 42
14.6 Errors in timers . 43
14.7 Results delivery . 43
14.8 Filtering . 44
14.9 System resources . 44

15 Arguments 45
15.1 Forward compatibility kwargs . 45
15.2 Retrying and timing . 45
15.3 Parametrization . 45
15.4 Operator configuration . 46
15.5 Resource-related kwargs . 46
15.6 Resource-watching kwargs . 48
15.7 Resource-changing kwargs . 48
15.8 Resource daemon kwargs . 49
15.9 Resource admission kwargs . 49

16 Async/Await 51

17 Loading and importing 53

18 Resource specification 55

19 Filtering 59
19.1 Metadata filters . 59
19.2 Field filters . 60
19.3 Change filters . 61
19.4 Value callbacks . 62
19.5 Callback filters . 62
19.6 Callback helpers . 63
19.7 Stealth mode . 63

20 Results delivery 65

21 Error handling 67
21.1 Temporary errors . 67
21.2 Permanent errors . 68
21.3 Regular errors . 68
21.4 Timeouts . 68
21.5 Retries . 69
21.6 Backoff . 69

ii

22 Scopes 71
22.1 Namespaces . 71
22.2 Cluster-wide . 72

23 In-memory containers 73
23.1 Resource memos . 73
23.2 Operator memos . 73
23.3 Custom memo classes . 74
23.4 Limitations . 75

24 In-memory indexing 77
24.1 Index declaration . 77
24.2 Index structure . 78
24.3 Index content . 78
24.4 Recipes . 79
24.5 Conditional indexing . 82
24.6 Errors in indexing . 82
24.7 Kwargs safety . 84
24.8 Performance . 84
24.9 Guarantees . 84
24.10 Limitations . 85

25 Admission control 87
25.1 Dependencies . 87
25.2 Validation handlers . 87
25.3 Mutation handlers . 88
25.4 Handler options . 89
25.5 In-memory containers . 89
25.6 Admission warnings . 90
25.7 Admission errors . 90
25.8 Webhook management . 91
25.9 Servers and tunnels . 91
25.10 Authenticate apiservers . 93
25.11 Debugging with SSL . 95
25.12 Custom servers/tunnels . 96
25.13 System resource cleanup . 97

26 Startup 99

27 Shutdown 101

28 Health-checks 103
28.1 Liveness endpoints . 103
28.2 Kubernetes probing . 103
28.3 Probe handlers . 104

29 Authentication 105
29.1 Custom authentication . 105
29.2 Piggybacking . 106
29.3 Credentials lifecycle . 107

30 Configuration 109
30.1 Startup configuration . 109
30.2 Logging formats and levels . 109
30.3 Logging events . 111

iii

30.4 Synchronous handlers . 111
30.5 Networking timeouts . 112
30.6 Finalizers . 113
30.7 Handling progress . 113
30.8 Change detection . 115
30.9 Storage transition . 115
30.10 Retrying of API errors . 116
30.11 Throttling of unexpected errors . 117

31 Peering 119
31.1 Priorities . 119
31.2 Scopes . 119
31.3 Custom peering . 120
31.4 Standalone mode . 121
31.5 Automatic peering . 121
31.6 Multi-pod operators . 121
31.7 Stealth keep-alive . 122

32 Command-line options 123
32.1 Scripting options . 123
32.2 Logging options . 123
32.3 Scope options . 124
32.4 Probing options . 124
32.5 Peering options . 124
32.6 Development mode . 125

33 Events 127
33.1 Handled objects . 127
33.2 Other objects . 128
33.3 Events for events . 128

34 Hierarchies 129
34.1 Labels . 129
34.2 Nested labels . 130
34.3 Owner references . 131
34.4 Names . 131
34.5 Namespaces . 132
34.6 Adopting . 133
34.7 3rd-party libraries . 133

35 Operator testing 135
35.1 Background runner . 135

36 Embedding 137
36.1 Manual execution . 137
36.2 Manual orchestration . 138
36.3 Custom event loops . 138
36.4 Multiple operators . 139

37 Deployment 141
37.1 Docker image . 141
37.2 Cluster deployment . 141
37.3 RBAC . 142

38 Continuity 145

iv

38.1 Persistence . 145
38.2 Restarts . 145
38.3 Downtime . 145

39 Idempotence 147

40 Reconciliation 149
40.1 Event-driven reactions . 149
40.2 Regularly scheduled timers . 149
40.3 Permanently running daemons . 150
40.4 What to use when? . 150

41 Tips & Tricks 151
41.1 Excluding handlers forever . 151

42 Troubleshooting 153
42.1 kubectl freezes on object deletion . 153

43 Minikube 155

44 Contributing 157
44.1 Git workflow . 157
44.2 Git conventions . 158
44.3 DCO sign-off . 158
44.4 Code style . 158
44.5 Tests . 159
44.6 Reviews . 159

45 Architecture 161
45.1 Layered layout . 161

46 kopf package 165
46.1 Submodules . 202

47 Vision 219

48 Naming 221

49 Alternatives 223
49.1 Metacontroller . 223
49.2 Side8’s k8s-operator . 224
49.3 CoreOS Operator SDK & Framework . 224

50 Indices and tables 225

Python Module Index 227

Index 229

v

vi

CHAPTER

ONE

INSTALLATION

Prerequisites:

• Python >= 3.8 (CPython and PyPy are officially tested and supported).

To install Kopf:

pip install kopf

If you use some of the managed Kubernetes services which require a sophisticated authentication beyond user-
name+password, fixed tokens, or client SSL certs (also see authentication piggy-backing):

pip install kopf[full-auth]

If you want extra i/o performance under the hood, install it as (also see Custom event loops):

pip install kopf[uvloop]

Unless you use the standalone mode, create a few Kopf-specific custom resources in the cluster:

kubectl apply -f https://github.com/nolar/kopf/raw/main/peering.yaml

Optionally, if you are going to use the examples or the code snippets:

kubectl apply -f https://github.com/nolar/kopf/raw/main/examples/crd.yaml

You are ready to go:

kopf --help
kopf run --help
kopf run examples/01-minimal/example.py

1

Kopf

2 Chapter 1. Installation

CHAPTER

TWO

CONCEPTS

Kubernetes is a container orchestrator.

It provides some basic primitives to orchestrate application deployments on a low level —such as the pods, jobs,
deployments, services, ingresses, persistent volumes and volume claims, secrets— and allows a Kubernetes cluster to
be extended with the arbitrary custom resources and custom controllers.

On the top level, it consists of the Kubernetes API, through which the users talk to Kubernetes, internal storage of the
state of the objects (etcd), and a collection of controllers. The command-line tooling (kubectl) can also be considered
as a part of the solution.

The Kubernetes controller is the logic (i.e. the behaviour) behind most objects, both built-in and added as extensions
of Kubernetes. Examples of objects are ReplicaSet and Pods, created when a Deployment object is created, with the
rolling version upgrades, and so on.

The main purpose of any controller is to bring the actual state of the cluster to the desired state, as expressed with the
resources/object specifications.

The Kubernetes operator is one kind of the controllers, which orchestrates objects of a specific kind, with some
domain logic implemented inside.

The essential difference between operators and the controllers is that operators are domain-specific controllers, but not
all controllers are necessary operators: for example, the built-in controllers for pods, deployments, services, etc, so as
the extensions of the object’s life-cycles based on the labels/annotations, are not operators, but just controllers.

The essential similarity is that they both implement the same pattern: watching the objects and reacting to the objects’
events (usually the changes).

Kopf is a framework to build Kubernetes operators in Python.

Like any framework, Kopf provides both the “outer” toolkit to run the operator, to talk to the Kubernetes cluster, and
to marshal the Kubernetes events into the pure-Python functions of the Kopf-based operator, and the “inner” libraries
to assist with a limited set of common tasks of manipulating the Kubernetes objects (however, it is not yet another
Kubernetes client library).

See also:

See Architecture to understand how Kopf works in detail, and what it does exactly.

See Vision and Alternatives to understand Kopf’s self-positioning in the world of Kubernetes.

See also:

• https://en.wikipedia.org/wiki/Kubernetes

3

https://en.wikipedia.org/wiki/Kubernetes

Kopf

• https://coreos.com/operators/

• https://stackoverflow.com/a/47857073

• https://github.com/kubeflow/tf-operator/issues/300

4 Chapter 2. Concepts

https://coreos.com/operators/
https://stackoverflow.com/a/47857073
https://github.com/kubeflow/tf-operator/issues/300

CHAPTER

THREE

SAMPLE PROBLEM

Throughout this user documentation, we try to solve a little real-world problem with Kopf, step by step, presenting and
explaining all the Kopf features one by one.

3.1 Problem Statement

In Kubernetes, there are no ephemeral volumes of big sizes, e.g. 500 GB. By ephemeral, it means that the volume does
not persist after it is used. Such volumes can be used as a workspace for large data-crunching jobs.

There is Local Ephemeral Storage, which allocates some space on a node’s root partition shared with the docker images
and other containers, but it is often limited in size depending on the node/cluster config:

kind: Pod
spec:
containers:
- name: main
resources:
requests:
ephemeral-storage: 1G

limits:
ephemeral-storage: 1G

There is a PersistentVolumeClaim resource kind, but it is persistent, i.e. not deleted after they are created (only manually
deletable).

There is StatefulSet, which has the volume claim template, but the volume claim is again persistent, and the set does
not follow the same flow as the Jobs do, more like the Deployments.

3.2 Problem Solution

We will implement the EphemeralVolumeClaim object kind, which will be directly equivalent to
PersistentVolumeClaim (and will use it internally), but with a little extension:

It will be designated for a pod or pods with specific selection criteria.

Once used, and all those pods are gone and are not going to be restarted, the ephemeral volume claim will be deleted
after a grace period.

For safety, there will be an expiry period for the cases when the claim was not used: e.g. if the pod could not start for
some reasons so that the claim does not remain stale forever.

The lifecycle of an EphemeralVolumeClaim is this:

5

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#local-ephemeral-storage
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

Kopf

• Created by a user with a template of PersistentVolumeClaim and a designated pod selector (by labels).

• Waits until the claim is used at least once.

– At least for N seconds of the safe time to allow the pods to start.

– At most for M seconds for the case when the pod has failed to start, but the claim was created.

• Deletes the PersistentVolumeClaim after either the pod is finished, or the wait time has elapsed.

See also:

This documentation only highlights the main patterns & tricks of Kopf, but does not dive deep into the implementation
of the operator’s domain. The fully functional solution for EphemeralVolumeClaim resources, which is used for this
documentation, is available at the following link:

• https://github.com/nolar/ephemeral-volume-claims

6 Chapter 3. Sample Problem

https://github.com/nolar/ephemeral-volume-claims

CHAPTER

FOUR

ENVIRONMENT SETUP

We need a running Kubernetes cluster and some tools for our experiments. If you have a cluster already preconfigured,
you can skip this section. Otherwise, let’s install minikube locally (e.g. for MacOS):

• Python >= 3.8 (running in a venv is recommended, though is not necessary).

• Install kubectl

• Install minikube (a local Kubernetes cluster)

• Install Kopf

Warning: Unfortunately, Minikube cannot handle the PVC/PV resizing, as it uses the HostPath provider internally.
You can either skip the Updating the objects step of this tutorial (where the sizes of the volumes are changed), or
you can use an external Kubernetes cluster with real dynamically sized volumes.

7

https://kubernetes.io/docs/tasks/tools/install-kubectl/

Kopf

8 Chapter 4. Environment Setup

CHAPTER

FIVE

CUSTOM RESOURCES

5.1 Custom Resource Definition

Let us define a CRD (custom resource definition) for our object:

Listing 1: crd.yaml

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
name: ephemeralvolumeclaims.kopf.dev

spec:
scope: Namespaced
group: kopf.dev
names:
kind: EphemeralVolumeClaim
plural: ephemeralvolumeclaims
singular: ephemeralvolumeclaim
shortNames:
- evcs
- evc

versions:
- name: v1
served: true
storage: true
schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
x-kubernetes-preserve-unknown-fields: true

status:
type: object
x-kubernetes-preserve-unknown-fields: true

Note the short names: they can be used as the aliases on the command line, when getting a list or an object of that kind.

And apply the definition to the cluster:

kubectl apply -f crd.yaml

9

Kopf

If you want to revert this operation (e.g., to try it again):

kubectl delete crd ephemeralvolumeclaims.kopf.dev
kubectl delete -f crd.yaml

5.2 Custom Resource Objects

Now, we can already create the objects of this kind, apply it to the cluster, modify and delete them. Nothing will happen,
since there is no implemented logic behind the objects yet.

Let’s make a sample object:

Listing 2: obj.yaml

apiVersion: kopf.dev/v1
kind: EphemeralVolumeClaim
metadata:
name: my-claim

This is the minimal yaml file needed, with no spec or fields inside. We will add them later.

Apply it to the cluster:

kubectl apply -f obj.yaml

Get a list of the existing objects of this kind with one of the commands:

kubectl get EphemeralVolumeClaim
kubectl get ephemeralvolumeclaims
kubectl get ephemeralvolumeclaim
kubectl get evcs
kubectl get evc

Please note that we can use the short names as specified on the custom resource definition.

See also:

• kubectl imperative style (create/edit/patch/delete)

• kubectl declarative style (apply)

10 Chapter 5. Custom Resources

CHAPTER

SIX

STARTING THE OPERATOR

Previously, we have defined a problem that we are solving, and created the custom resource definitions for the ephemeral
volume claims.

Now, we are ready to write some logic for this kind of objects. Let’s start with an operator skeleton that does nothing
useful – just to see how it can be started.

Listing 1: ephemeral.py

import kopf
import logging

@kopf.on.create('ephemeralvolumeclaims')
def create_fn(body, **kwargs):

logging.info(f"A handler is called with body: {body}")

Note: Despite an obvious desire, do not name the file as operator.py, since there is a built-in module in Python 3
with this name, and there could be potential conflicts on the imports.

Let’s run the operator and see what will happen:

kopf run ephemeral.py --verbose

The output looks like this:

[2019-05-31 10:42:11,870] kopf.config [DEBUG] configured via kubeconfig file
[2019-05-31 10:42:11,913] kopf.reactor.peering [WARNING] Default peering object is not␣
→˓found, falling back to the standalone mode.
[2019-05-31 10:42:12,037] kopf.reactor.handlin [DEBUG] [default/my-claim] First␣
→˓appearance: {'apiVersion': 'kopf.dev/v1', 'kind': 'EphemeralVolumeClaim', 'metadata': {
→˓'annotations': {'kubectl.kubernetes.io/last-applied-configuration': '{"apiVersion":
→˓"kopf.dev/v1","kind":"EphemeralVolumeClaim","metadata":{"annotations":{},"name":"my-
→˓claim","namespace":"default"}}\n'}, 'creationTimestamp': '2019-05-29T00:41:57Z',
→˓'generation': 1, 'name': 'my-claim', 'namespace': 'default', 'resourceVersion': '47720
→˓', 'selfLink': '/apis/kopf.dev/v1/namespaces/default/ephemeralvolumeclaims/my-claim',
→˓'uid': '904c2b9b-81aa-11e9-a202-a6e6b278a294'}}
[2019-05-31 10:42:12,038] kopf.reactor.handlin [DEBUG] [default/my-claim] Adding the␣
→˓finalizer, thus preventing the actual deletion.
[2019-05-31 10:42:12,038] kopf.reactor.handlin [DEBUG] [default/my-claim] Patching␣
→˓with: {'metadata': {'finalizers': ['KopfFinalizerMarker']}}
[2019-05-31 10:42:12,165] kopf.reactor.handlin [DEBUG] [default/my-claim] Creation is␣

(continues on next page)

11

Kopf

(continued from previous page)

→˓in progress: {'apiVersion': 'kopf.dev/v1', 'kind': 'EphemeralVolumeClaim', 'metadata':
→˓{'annotations': {'kubectl.kubernetes.io/last-applied-configuration': '{"apiVersion":
→˓"kopf.dev/v1","kind":"EphemeralVolumeClaim","metadata":{"annotations":{},"name":"my-
→˓claim","namespace":"default"}}\n'}, 'creationTimestamp': '2019-05-29T00:41:57Z',
→˓'finalizers': ['KopfFinalizerMarker'], 'generation': 1, 'name': 'my-claim', 'namespace
→˓': 'default', 'resourceVersion': '47732', 'selfLink': '/apis/kopf.dev/v1/namespaces/
→˓default/ephemeralvolumeclaims/my-claim', 'uid': '904c2b9b-81aa-11e9-a202-a6e6b278a294'}
→˓}
[2019-05-31 10:42:12,166] root [INFO] A handler is called with body:
→˓{'apiVersion': 'kopf.dev/v1', 'kind': 'EphemeralVolumeClaim', 'metadata': {'annotations
→˓': {'kubectl.kubernetes.io/last-applied-configuration': '{"apiVersion":"kopf.dev/v1",
→˓"kind":"EphemeralVolumeClaim","metadata":{"annotations":{},"name":"my-claim","namespace
→˓":"default"}}\n'}, 'creationTimestamp': '2019-05-29T00:41:57Z', 'finalizers': [
→˓'KopfFinalizerMarker'], 'generation': 1, 'name': 'my-claim', 'namespace': 'default',
→˓'resourceVersion': '47732', 'selfLink': '/apis/kopf.dev/v1/namespaces/default/
→˓ephemeralvolumeclaims/my-claim', 'uid': '904c2b9b-81aa-11e9-a202-a6e6b278a294'}, 'spec
→˓': {}, 'status': {}}
[2019-05-31 10:42:12,168] kopf.reactor.handlin [DEBUG] [default/my-claim] Invoking␣
→˓handler 'create_fn'.
[2019-05-31 10:42:12,173] kopf.reactor.handlin [INFO] [default/my-claim] Handler
→˓'create_fn' succeeded.
[2019-05-31 10:42:12,210] kopf.reactor.handlin [INFO] [default/my-claim] All␣
→˓handlers succeeded for creation.
[2019-05-31 10:42:12,223] kopf.reactor.handlin [DEBUG] [default/my-claim] Patching␣
→˓with: {'status': {'kopf': {'progress': None}}, 'metadata': {'annotations': {'kopf.
→˓zalando.org/last-handled-configuration': '{"apiVersion": "kopf.dev/v1", "kind":
→˓"EphemeralVolumeClaim", "metadata": {"name": "my-claim", "namespace": "default"}, "spec
→˓": {}}'}}}
[2019-05-31 10:42:12,342] kopf.reactor.handlin [DEBUG] [default/my-claim] Updating is␣
→˓in progress: {'apiVersion': 'kopf.dev/v1', 'kind': 'EphemeralVolumeClaim', 'metadata':
→˓{'annotations': {'kopf.zalando.org/last-handled-configuration': '{"apiVersion": "kopf.
→˓dev/v1", "kind": "EphemeralVolumeClaim", "metadata": {"name": "my-claim", "namespace":
→˓"default"}, "spec": {}}', 'kubectl.kubernetes.io/last-applied-configuration': '{
→˓"apiVersion":"kopf.dev/v1","kind":"EphemeralVolumeClaim","metadata":{"annotations":{},
→˓"name":"my-claim","namespace":"default"}}\n'}, 'creationTimestamp': '2019-05-
→˓29T00:41:57Z', 'finalizers': ['KopfFinalizerMarker'], 'generation': 2, 'name': 'my-
→˓claim', 'namespace': 'default', 'resourceVersion': '47735', 'selfLink': '/apis/kopf.
→˓dev/v1/namespaces/default/ephemeralvolumeclaims/my-claim', 'uid': '904c2b9b-81aa-11e9-
→˓a202-a6e6b278a294'}, 'status': {'kopf': {}}}
[2019-05-31 10:42:12,343] kopf.reactor.handlin [INFO] [default/my-claim] All␣
→˓handlers succeeded for update.
[2019-05-31 10:42:12,362] kopf.reactor.handlin [DEBUG] [default/my-claim] Patching␣
→˓with: {'status': {'kopf': {'progress': None}}, 'metadata': {'annotations': {'kopf.
→˓zalando.org/last-handled-configuration': '{"apiVersion": "kopf.dev/v1", "kind":
→˓"EphemeralVolumeClaim", "metadata": {"name": "my-claim", "namespace": "default"}, "spec
→˓": {}}'}}}

Note that the operator has noticed an object created before the operator was even started, and handled the object because
it was not handled before.

Now, you can stop the operator with Ctrl-C (twice), and start it again:

12 Chapter 6. Starting the operator

Kopf

kopf run ephemeral.py --verbose

The operator will not handle the object, as now it is already successfully handled. This is important in case the operator
is restarted if it runs in a normally deployed pod, or when you restart the operator for debugging.

Let’s delete and re-create the same object to see the operator reacting:

kubectl delete -f obj.yaml
kubectl apply -f obj.yaml

13

Kopf

14 Chapter 6. Starting the operator

CHAPTER

SEVEN

CREATING THE OBJECTS

Previously (Starting the operator), we have created a skeleton operator and learned to start it and see the logs. Now,
let’s add a few meaningful reactions to solve our problem (Sample Problem).

We want to create a real PersistentVolumeClaim object immediately when an EphemeralVolumeClaim is created
this way:

Listing 1: evc.yaml

apiVersion: kopf.dev/v1
kind: EphemeralVolumeClaim
metadata:
name: my-claim

spec:
size: 1G

kubectl apply -f evc.yaml

First, let’s define a template of the persistent volume claim (with the Python template string, so that no extra template
engines are needed):

Listing 2: pvc.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: "{name}"
annotations:
volume.beta.kubernetes.io/storage-class: standard

spec:
accessModes:
- ReadWriteOnce

resources:
requests:
storage: "{size}"

Let’s extend our only handler. We will use the official Kubernetes client library (pip install kubernetes):

Listing 3: ephemeral.py

import os
import kopf
import kubernetes

(continues on next page)

15

Kopf

(continued from previous page)

import yaml

@kopf.on.create('ephemeralvolumeclaims')
def create_fn(spec, name, namespace, logger, **kwargs):

size = spec.get('size')
if not size:

raise kopf.PermanentError(f"Size must be set. Got {size!r}.")

path = os.path.join(os.path.dirname(__file__), 'pvc.yaml')
tmpl = open(path, 'rt').read()
text = tmpl.format(name=name, size=size)
data = yaml.safe_load(text)

api = kubernetes.client.CoreV1Api()
obj = api.create_namespaced_persistent_volume_claim(

namespace=namespace,
body=data,

)

logger.info(f"PVC child is created: {obj}")

And let us try it in action (assuming the operator is running in the background):

kubectl apply -f evc.yaml

Wait 1-2 seconds, and take a look:

kubectl get pvc

Now, the PVC can be attached to the pods by the same name, as EVC is named.

Note: If you have to re-run the operator and hit an HTTP 409 error saying “persistentvolumeclaims “my-claim” already
exists”, then remove it manually:

kubectl delete pvc my-claim

See also:

See also Handlers, Error handling, Hierarchies.

16 Chapter 7. Creating the objects

CHAPTER

EIGHT

UPDATING THE OBJECTS

Warning: Unfortunately, Minikube cannot handle the PVC/PV resizing, as it uses the HostPath provider internally.
You can either skip this step of the tutorial, or you can use an external Kubernetes cluster with real dynamically
sized volumes.

Previously (Creating the objects), we have implemented a handler for the creation of an EphemeralVolumeClaim
(EVC), and created the corresponding PersistantVolumeClaim (PVC).

What will happen if we change the size of the EVC when it already exists? The PVC must be updated accordingly to
match its parent EVC.

First, we have to remember the name of the created PVC: Let’s extend the creation handler we already have from the
previous step with one additional line:

Listing 1: ephemeral.py

@kopf.on.create('ephemeralvolumeclaims')
def create_fn(spec, name, namespace, logger, **kwargs):

size = spec.get('size')
if not size:

raise kopf.PermanentError(f"Size must be set. Got {size!r}.")

path = os.path.join(os.path.dirname(__file__), 'pvc.yaml')
tmpl = open(path, 'rt').read()
text = tmpl.format(size=size, name=name)
data = yaml.safe_load(text)

api = kubernetes.client.CoreV1Api()
obj = api.create_namespaced_persistent_volume_claim(

namespace=namespace,
body=data,

)

logger.info(f"PVC child is created: {obj}")

return {'pvc-name': obj.metadata.name}

Whatever is returned from any handler, is stored in the object’s status under that handler id (which is the function name
by default). We can see that with kubectl:

17

Kopf

kubectl get -o yaml evc my-claim

spec:
size: 1G

status:
create_fn:
pvc-name: my-claim

kopf: {}

Note: If the above change causes Patching failed with inconsistencies debug warnings and/or your EVC
YAML doesn’t show a .status field, make sure you have set the x-kubernetes-preserve-unknown-fields:
true field in your CRD on either the entire object or just the .status field as detailed in Custom Resources. Without
setting this field, Kubernetes will prune the .status field when Kopf tries to update it. For more info on field pruning,
see the Kubernetes docs.

Let’s add a yet another handler, but for the “update” cause. This handler gets this stored PVC name from the creation
handler, and patches the PVC with the new size from the EVC:

@kopf.on.update('ephemeralvolumeclaims')
def update_fn(spec, status, namespace, logger, **kwargs):

size = spec.get('size', None)
if not size:

raise kopf.PermanentError(f"Size must be set. Got {size!r}.")

pvc_name = status['create_fn']['pvc-name']
pvc_patch = {'spec': {'resources': {'requests': {'storage': size}}}}

api = kubernetes.client.CoreV1Api()
obj = api.patch_namespaced_persistent_volume_claim(

namespace=namespace,
name=pvc_name,
body=pvc_patch,

)

logger.info(f"PVC child is updated: {obj}")

Now, let’s change the EVC’s size:

kubectl edit evc my-claim

Or by patching it:

kubectl patch evc my-claim --type merge -p '{"spec": {"size": "2G"}}'

Keep in mind the PVC size can only be increased, never decreased.

Give the operator a few seconds to handle the change.

Check the size of the actual PV behind the PVC, which is now increased:

kubectl get pv

18 Chapter 8. Updating the objects

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#field-pruning

Kopf

NAME CAPACITY ACCESS MODES ...
pvc-a37b65bd-8384-11e9-b857-42010a800265 2Gi RWO ...

Warning: Kubernetes & kubectl improperly show the capacity of PVCs: it remains the same (1G) event after
the change. The size of the actual PV (Persistent Volume) of each PVC is important! This issue is not related to
Kopf, so we go around it.

19

Kopf

20 Chapter 8. Updating the objects

CHAPTER

NINE

DIFFING THE FIELDS

Previously (Updating the objects), we have set the size of PVC to be updated every time the size of EVC is updated,
i.e. the cascaded updates.

What will happen if the user re-labels the EVC?

kubectl label evc my-claim application=some-app owner=me

Nothing. The EVC update handler will be called, but it only uses the size field. Other fields are ignored.

Let’s re-label the PVC with the labels of its EVC, and keep them in sync. The sync is one-way: re-labelling the child
PVC does not affect the parent EVC.

9.1 Old & New

It can be done the same way as the size update handlers, but we will use another feature of Kopf to track one specific
field only:

Listing 1: ephemeral.py

@kopf.on.field('ephemeralvolumeclaims', field='metadata.labels')
def relabel(old, new, status, namespace, **kwargs):

pvc_name = status['create_fn']['pvc-name']
pvc_patch = {'metadata': {'labels': new}}

api = kubernetes.client.CoreV1Api()
obj = api.patch_namespaced_persistent_volume_claim(

namespace=namespace,
name=pvc_name,
body=pvc_patch,

)

The old & new kwargs contain the old & new values of the field (or of the whole object for the object handlers).

It will work as expected when the user adds new labels and changes the existing labels, but not when the user deletes
the labels from the EVC.

Why? Because of how patching works in Kubernetes API: it merges the dictionaries (with some exceptions). To delete
a field from the object, it should be set to None in the patch object.

So, we should know which fields were deleted from EVC. Natively, Kubernetes does not provide this information for
the object events, since Kubernetes notifies the operators only with the newest state of the object – as seen in body/meta
kwargs.

21

Kopf

9.2 Diffs

Kopf tracks the state of the objects and calculates the diffs. The diffs are provided as the diff kwarg; the old & new
states of the object or field – as the old & new kwargs.

A diff-object has this structure:

((action, n-tuple of object or field path, old, new),)

with example:

(('add', ('metadata', 'labels', 'label1'), None, 'new-value'),
('change', ('metadata', 'labels', 'label2'), 'old-value', 'new-value'),
('remove', ('metadata', 'labels', 'label3'), 'old-value', None),
('change', ('spec', 'size'), '1G', '2G'))

For the field-handlers, it will be the same, but the field path will be relative to the handled field, and unrelated fields
will be filtered out. For example, if the field is metadata.labels:

(('add', ('label1',), None, 'new-value'),
('change', ('label2',), 'old-value', 'new-value'),
('remove', ('label3',), 'old-value', None))

Now, let’s use this feature to explicitly react to the re-labelling of the EVCs. Note that the new value for the removed
dict key is None, exactly as needed for the patch object (i.e. the field is present there):

Listing 2: ephemeral.py

@kopf.on.field('ephemeralvolumeclaims', field='metadata.labels')
def relabel(diff, status, namespace, **kwargs):

labels_patch = {field[0]: new for op, field, old, new in diff}
pvc_name = status['create_fn']['pvc-name']
pvc_patch = {'metadata': {'labels': labels_patch}}

api = kubernetes.client.CoreV1Api()
obj = api.patch_namespaced_persistent_volume_claim(

namespace=namespace,
name=pvc_name,
body=pvc_patch,

)

Note that the unrelated labels that were put on the PVC —e.g., manually, from the template, by other con-
trollers/operators, beside the labels coming from the parent EVC— are persisted and never touched (unless the same-
named label is applied to EVC and propagated to the PVC).

kubectl describe pvc my-claim

Name: my-claim
Namespace: default
StorageClass: standard
Status: Bound
Labels: application=some-app

owner=me

22 Chapter 9. Diffing the fields

CHAPTER

TEN

CASCADED DELETION

Previously (Creating the objects & Updating the objects & Diffing the fields), we have implemented the creation of a
PersistentVolumeClaim (PVC) every time an EphemeralVolumeClaim (EVC) is created, and cascaded updates of
the size and labels when they are changed.

What will happen if the EphemeralVolumeClaim is deleted?

kubectl delete evc my-claim
kubectl delete -f evc.yaml

By default, from the Kubernetes point of view, the PVC & EVC are not connected. Hence, the PVC will continue to
exist even if its parent EVC is deleted. Hopefully, some other controller (e.g. the garbage collector) will delete it. Or
maybe not.

We want to make sure the child PVC is deleted when the parent EVC is deleted.

The straightforward way would be to implement a deletion handler with @kopf.on.delete. But we will go another
way, and use the built-in feature of Kubernetes: the owner references.

Let’s extend the creation handler:

Listing 1: ephemeral.py

import os
import kopf
import kubernetes
import yaml

@kopf.on.create('ephemeralvolumeclaims')
def create_fn(spec, name, namespace, logger, body, **kwargs):

size = spec.get('size')
if not size:

raise kopf.PermanentError(f"Size must be set. Got {size!r}.")

path = os.path.join(os.path.dirname(__file__), 'pvc.yaml')
tmpl = open(path, 'rt').read()
text = tmpl.format(name=name, size=size)
data = yaml.safe_load(text)

kopf.adopt(data)

api = kubernetes.client.CoreV1Api()
obj = api.create_namespaced_persistent_volume_claim(

(continues on next page)

23

https://kubernetes.io/docs/concepts/workloads/controllers/garbage-collection/

Kopf

(continued from previous page)

namespace=namespace,
body=data,

)

logger.info(f"PVC child is created: {obj}")

return {'pvc-name': obj.metadata.name}

With this one line, kopf.adopt()marks the PVC as a child of EVC. This includes the name auto-generation (if absent),
the label propagation, the namespace assignment to the parent’s object namespace, and, finally, the owner referencing.

The PVC is now “owned” by the EVC, i.e. it has an owner reference. When the parent EVC object is deleted, the child
PVC will also be deleted (and terminated in case of pods), so that we do not need to control this ourselves.

24 Chapter 10. Cascaded deletion

CHAPTER

ELEVEN

CLEANUP

To clean up the cluster after all the experiments are finished:

kubectl delete -f obj.yaml
kubectl delete -f crd.yaml

Alternatively, Minikube can be reset for the full cluster cleanup.

25

Kopf

26 Chapter 11. Cleanup

CHAPTER

TWELVE

HANDLERS

Handlers are Python functions with the actual behaviour of the custom resources.

They are called when any custom resource (within the scope of the operator) is created, modified, or deleted.

Any operator built with Kopf is based on handlers.

12.1 Events & Causes

Kubernetes only notifies when something is changed in the object, but it does not clarify what was changed.

More on that, since Kopf stores the state of the handlers on the object itself, these state changes also cause the events,
which are seen by the operators and any other watchers.

To hide the complexity of the state storing, Kopf provides a cause detection: whenever an event happens for the object,
the framework detects what happened actually, as follows:

• Was the object just created?

• Was the object deleted (marked for deletion)?

• Was the object edited, and which fields specifically were edited, from what old values into what new values?

These causes, in turn, trigger the appropriate handlers, passing the detected information to the keyword arguments.

12.2 Registering

To register a handler for an event, use the @kopf.on decorator:

import kopf

@kopf.on.create('kopfexamples')
def my_handler(spec, **_):

pass

All available decorators are described below.

Kopf only supports simple functions and static methods as handlers. Class and instance methods are not supported.
For explanation and rationale, see the discussion in #849 (briefly: the semantics of handlers is vague when multiple
instances exist or multiple sub-classes inherit from the class, thus inheriting the handlers).

Would you still want to use classes for namespacing, register the handlers by using Kopf’s decorators explicitly for
specific instances/sub-classes thus resolving the mentioned vagueness and giving the meaning to self/cls:

27

https://github.com/nolar/kopf/issues/849

Kopf

import kopf

class MyCls:
def my_handler(self, spec, **kwargs):

print(repr(self))

instance = MyCls()
kopf.on.create('kopfexamples')(instance.my_handler)

12.3 Event-watching handlers

Low-level events can be intercepted and handled silently, without storing the handlers’ status (errors, retries, successes)
on the object.

This can be useful if the operator needs to watch over the objects of another operator or controller, without adding its
data.

The following event-handler is available:

import kopf

@kopf.on.event('kopfexamples')
def my_handler(event, **_):

pass

If the event handler fails, the error is logged to the operator’s log, and then ignored.

Note: Please note that the event handlers are invoked for every event received from the watching stream. This also
includes the first-time listing when the operator starts or restarts.

It is the developer’s responsibility to make the handlers idempotent (re-executable with no duplicating side-effects).

12.4 State-changing handlers

Kopf goes further and beyond: it detects the actual causes of these events, i.e. what happened to the object:

• Was the object just created?

• Was the object deleted (marked for deletion)?

• Was the object edited, and which fields specifically were edited, from which old values to which new values?

Note: Worth noting that Kopf stores the status of the handlers, such as their progress or errors or retries, in the object
itself (.status stanza), which triggers its low-level events, but these events are not detected as separate causes, as there
is nothing changed essentially.

The following 3 core cause-handlers are available:

28 Chapter 12. Handlers

Kopf

import kopf

@kopf.on.create('kopfexamples')
def my_handler(spec, **_):

pass

@kopf.on.update('kopfexamples')
def my_handler(spec, old, new, diff, **_):

pass

@kopf.on.delete('kopfexamples')
def my_handler(spec, **_):

pass

Note: Kopf’s finalizers will be added to the object when there are delete handlers specified. Finalizers block Kuber-
netes from fully deleting objects and Kubernetes will only actually delete objects when all finalizers are removed, i.e.
only if the Kopf operator is running to remove them (check: kubectl freezes on object deletion for a workaround). If
a delete handler is added but finalizers are not required to block the actual deletion, i.e. the handler is optional, the
optional argument optional=True can be passed to the delete cause decorator.

12.5 Resuming handlers

A special kind of handlers can be used for cases when the operator restarts and detects an object that existed before:

@kopf.on.resume('kopfexamples')
def my_handler(spec, **_):

pass

This handler can be used to start threads or asyncio tasks or to update a global state to keep it consistent with the actual
state of the cluster. With the resuming handler in addition to creation/update/deletion handlers, no object will be left
unattended even if it does not change over time.

The resuming handlers are guaranteed to execute only once per operator lifetime for each resource object (except if
errors are retried).

Normally, the resume handlers are mixed-in to the creation and updating handling cycles, and are executed in the order
they are declared.

It is a common pattern to declare both creation and resuming handler pointing to the same function, so that this function
is called either when an object is created (“started) while the operator is alive (“exists”), or when the operator is started
(“created”) when the object is existent (“alive”):

@kopf.on.resume('kopfexamples')
@kopf.on.create('kopfexamples')
def my_handler(spec, **_):

pass

However, the resuming handlers are not called if the object has been deleted during the operator downtime or restart,
and the deletion handlers are now being invoked.

This is done intentionally to prevent the cases when the resuming handlers start threads/tasks or allocate the resources,
and the deletion handlers stop/free them: it can happen so that the resuming handlers would be executed after the

12.5. Resuming handlers 29

Kopf

deletion handlers, thus starting threads/tasks and never stopping them. For example:

TASKS = {}

@kopf.on.delete('kopfexamples')
async def my_handler(spec, name, **_):

if name in TASKS:
TASKS[name].cancel()

@kopf.on.resume('kopfexamples')
@kopf.on.create('kopfexamples')
def my_handler(spec, **_):

if name not in TASKS:
TASKS[name] = asyncio.create_task(some_coroutine(spec))

In this example, if the operator starts and notices an object that is marked for deletion, the deletion handler will be
called, but the resuming handler is not called at all, despite the object was noticed to exist out there. Otherwise, there
would be a resource (e.g. memory) leak.

If the resume handlers are still desired during the deletion handling, they can be explicitly marked as compatible with
the deleted state of the object with deleted=True option:

@kopf.on.resume('kopfexamples', deleted=True)
def my_handler(spec, **_):

pass

In that case, both the deletion and resuming handlers will be invoked. It is the developer’s responsibility to ensure this
does not lead to memory leaks.

12.6 Field handlers

Specific fields can be handled instead of the whole object:

import kopf

@kopf.on.field('kopfexamples', field='spec.somefield')
def somefield_changed(old, new, **_):

pass

There is no special detection of the causes for the fields, such as create/update/delete, so the field-handler is efficient
only when the object is updated.

12.7 Sub-handlers

Warning: Sub-handlers are an advanced topic. Please, make sure you understand the regular handlers first, so as
the handling cycle of the framework.

A common example for this feature are the lists defined in the spec, each of which should be handled with a handler-like
approach rather than explicitly – i.e. with the error tracking, retries, logging, progress and status reporting, etc.

30 Chapter 12. Handlers

Kopf

This can be used with dynamically created functions, such as lambdas, partials (functools.partial), or the inner
functions in the closures:

spec:
items:
- item1
- item2

Sub-handlers can be implemented either imperatively (where it requires asynchronous handlers and async/await):

import functools
import kopf

@kopf.on.create('kopfexamples')
async def create_fn(spec, **_):

fns = {}

for item in spec.get('items', []):
fns[item] = functools.partial(handle_item, item=item)

await kopf.execute(fns=fns)

def handle_item(item, *, spec, **_):
pass

Or declaratively with decorators:

import kopf

@kopf.on.create('kopfexamples')
def create_fn(spec, **_):

for item in spec.get('items', []):

@kopf.subhandler(id=item)
def handle_item(item=item, **_):

pass

Both of these ways are equivalent. It is a matter of taste and preference which one to use.

The sub-handlers will be processed by all the standard rules and cycles of the Kopf’s handling cycle, as if they were
the regular handlers with the ids like create_fn/item1, create_fn/item2, etc.

Warning: The sub-handler functions, their code or their arguments, are not remembered on the object between
the handling cycles.

Instead, their parent handler is considered as not finished, and it is called again and again to register the sub-handlers
until all the sub-handlers of that parent handler are finished, so that the parent handler also becomes finished.

As such, the parent handler SHOULD NOT produce any side-effects except as the read-only parsing of the inputs
(e.g. spec), and generating the dynamic functions of the sub-handlers.

12.7. Sub-handlers 31

https://docs.python.org/3/library/functools.html#functools.partial

Kopf

32 Chapter 12. Handlers

CHAPTER

THIRTEEN

DAEMONS

Daemons are a special type of handlers for background logic that accompanies the Kubernetes resources during their
life cycle.

Unlike event-driven short-running handlers declared with @kopf.on, daemons are started for every individual object
when it is created (or when an operator is started/restarted while the object exists), and are capable of running indefi-
nitely (or infinitely) long.

The object’s daemons are stopped when the object is deleted or the whole operator is exiting/restarting.

13.1 Spawning

To have a daemon accompanying a resource of some kind, decorate a function with @kopf.daemon and make it run
for a long time or forever:

import asyncio
import time
import kopf

@kopf.daemon('kopfexamples')
async def monitor_kex_async(**kwargs):

while True:
... # check something
await asyncio.sleep(10)

@kopf.daemon('kopfexamples')
def monitor_kex_sync(stopped, **kwargs):

while not stopped:
... # check something
time.sleep(10)

Synchronous functions are executed in threads, asynchronous functions are executed directly in the asyncio event loop
of the operator – same as with regular handlers. See Async/Await.

The same executor is used both for regular sync handlers and for sync daemons. If you expect a large number of
synchronous daemons (e.g. for large clusters), make sure to pre-scale the executor accordingly. See Configuration
(Synchronous handlers).

33

Kopf

13.2 Termination

The daemons are terminated when either their resource is marked for deletion, or the operator itself is exiting.

In both cases, the daemons are requested to terminate gracefully by setting the stopped kwarg. The synchronous
daemons MUST, and asynchronous daemons SHOULD check for the value of this flag as often as possible:

import asyncio
import kopf

@kopf.daemon('kopfexamples')
def monitor_kex(stopped, **kwargs):

while not stopped:
time.sleep(1.0)

print("We are done. Bye.")

The asynchronous daemons can skip these checks if they define the cancellation timeout. In that case, they can expect
an asyncio.CancelledError to be raised at any point of their code (specifically, at any await clause):

import asyncio
import kopf

@kopf.daemon('kopfexamples', cancellation_timeout=1.0)
async def monitor_kex(**kwargs):

try:
while True:

await asyncio.sleep(10)
except asyncio.CancelledError:

print("We are done. Bye.")

With no cancellation timeout set, cancellation is not performed at all, as it is unclear for how long should the coroutine
be awaited. However, it is cancelled when the operator exits and stops all “hung” left-over tasks (not specifically
daemons).

Note: The MUST / SHOULD separation is due to Python having no way to terminate a thread unless the thread exits
on its own. The stopped flag is a way to signal the thread it should exit. If stopped is not checked, the synchronous
daemons will run forever or until an error happens.

13.3 Timeouts

The termination sequence parameters can be controlled when declaring a daemon:

import asyncio
import kopf

@kopf.daemon('kopfexamples',
cancellation_backoff=1.0, cancellation_timeout=3.0)

async def monitor_kex(stopped, **kwargs):
while not stopped:

await asyncio.sleep(1)

34 Chapter 13. Daemons

https://tools.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/rfc/rfc2119.txt
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError
https://tools.ietf.org/rfc/rfc2119.txt
https://tools.ietf.org/rfc/rfc2119.txt

Kopf

There are three stages of how the daemon is terminated:

• 1. Graceful termination: * stopped is set immediately (unconditionally). * cancellation_backoff is awaited
(if set).

• 2. Forced termination – only if cancellation_timeout is set: * asyncio.CancelledError is raised (for
async daemons only). * cancellation_timeout is awaited (if set).

• 3a. Giving up and abandoning – only if cancellation_timeout is set: * A ResourceWarning is issued for
potential OS resource leaks. * The finalizer is removed, and the object is released for potential deletion.

• 3b. Forever polling – only if cancellation_timeout is not set: * The daemon awaiting continues forever,
logging from time to time. * The finalizer is not removed and the object remains blocked from deletion.

The cancellation_timeout is measured from the point when the daemon is cancelled (forced termination begins),
not from where the termination itself begins; i.e., since the moment when the cancellation backoff is over. The total
termination time is cancellation_backoff + cancellation_timeout.

Warning: When the operator is terminating, it has its timeout of 5 seconds for all “hung” tasks. This includes the
daemons after they are requested to finish gracefully and all timeouts are reached.

If the daemon termination takes longer than this for any reason, the daemon will be cancelled (by the operator, not
by the daemon guard) regardless of the graceful timeout of the daemon. If this does not help, the operator will be
waiting for all hung tasks until SIGKILL’ed.

Warning: If the operator is running in a cluster, there can be timeouts set for a pod
(terminationGracePeriodSeconds, the default is 30 seconds).

If the daemon termination is longer than this timeout, the daemons will not be finished in full at the operator exit,
as the pod will be SIGKILL’ed.

Kopf itself does not set any implicit timeouts for the daemons. Either design the daemons to exit as fast as possible, or
configure terminationGracePeriodSeconds and cancellation timeouts accordingly.

13.4 Safe sleep

For synchronous daemons, it is recommended to use stopped.wait() instead of time.sleep(): the wait will end
when either the time is reached (as with the sleep), or immediately when the stopped flag is set:

import kopf

@kopf.daemon('kopfexamples')
def monitor_kex(stopped, **kwargs):

while not stopped:
stopped.wait(10)

For asynchronous handlers, regular asyncio.sleep() should be sufficient, as it is cancellable via asyncio.
CancelledError. If a cancellation is neither configured nor desired, stopped.wait() can be used too (with await):

import kopf

@kopf.daemon('kopfexamples')
(continues on next page)

13.4. Safe sleep 35

https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError
https://docs.python.org/3/library/exceptions.html#ResourceWarning
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError

Kopf

(continued from previous page)

async def monitor_kex(stopped, **kwargs):
while not stopped:

await stopped.wait(10)

This way, the daemon will exit as soon as possible when the stopped is set, not when the next sleep is over. Therefore,
the sleeps can be of any duration while the daemon remains terminable (leads to no OS resource leakage).

Note: Synchronous and asynchronous daemons get different types of stop-checker: with synchronous and asyn-
chronous interfaces respectively. Therefore, they should be used accordingly: without or with await.

13.5 Postponing

Normally, daemons are spawned immediately once resource becomes visible to the operator: i.e. on resource creation
or operator startup.

It is possible to postpone the daemon spawning:

import asyncio
import kopf

@kopf.daemon('kopfexamples', initial_delay=30)
async def monitor_kex(stopped, **kwargs):

while True:
await asyncio.sleep(1.0)

The start of the daemon will be delayed by 30 seconds after the resource creation (or operator startup). For example,
this can be used to give some time for regular event-driven handlers to finish without producing too much activity.

13.6 Restarting

It is generally expected that daemons are designed to run forever. However, a daemon can exit prematurely, i.e. before
the resource is deleted or the operator terminates.

In that case, the daemon will not be restarted again during the lifecycle of this resource in this operator process (however,
it will be spawned again if the operator restarts). This way, it becomes a long-running equivalent of on-creation/on-
resuming handlers.

To simulate restarting, raise kopf.TemporaryError with a delay set.

import asyncio
import kopf

@kopf.daemon('kopfexamples')
async def monitor_kex(stopped, **kwargs):

await asyncio.sleep(10.0)
raise kopf.TemporaryError("Need to restart.", delay=10)

Same as with regular error handling, a delay of None means instant restart.

See also: Excluding handlers forever to prevent daemons from spawning across operator restarts.

36 Chapter 13. Daemons

Kopf

13.7 Deletion prevention

Normally, a finalizer is put on the resource if there are daemons running for it – to prevent its actual deletion until all
the daemons are terminated.

Only after the daemons are terminated, the finalizer is removed to release the object for actual deletion.

However, it is possible to have daemons that disobey the exiting signals and continue running after the timeouts. In
that case, the finalizer is anyway removed, and the orphaned daemons are left to themselves.

13.8 Resource fields access

The resource’s current state is accessible at any time through regular kwargs (see Arguments): body, spec, meta,
status, uid , name, namespace, etc.

The values are “live views” of the current state of the object as it is being modified during its lifecycle (not frozen as
in the event-driven handlers):

import random
import time
import kopf

@kopf.daemon('kopfexamples')
def monitor_kex(stopped, logger, body, spec, **kwargs):

while not stopped:
logger.info(f"FIELD={spec['field']}")
time.sleep(1)

@kopf.timer('kopfexamples', interval=2.5)
def modify_kex_sometimes(patch, **kwargs):

patch.spec['field'] = random.randint(0, 100)

Always access the fields through the provided kwargs, and do not store them in local variables. Internally, Kopf sub-
stitutes the whole object’s body on every external change. Storing the field values to the variables will remember their
value as it was at that moment in time, and will not be updated as the object changes.

13.9 Results delivery

As with any other handlers, the daemons can return arbitrary JSON-serializable values to be put on the resource’s
status:

import asyncio
import kopf

@kopf.daemon('kopfexamples')
async def monitor_kex(stopped, **kwargs):

await asyncio.sleep(10.0)
return {'finished': True}

13.7. Deletion prevention 37

Kopf

13.10 Error handling

The error handling is the same as for all other handlers: see Error handling:

@kopf.daemon('kopfexamples',
errors=kopf.ErrorsMode.TEMPORARY, backoff=1, retries=10)

def monitor_kex(retry, **_):
if retry < 3:

raise kopf.TemporaryError("I'll be back!", delay=1)
elif retry < 5:

raise EnvironmentError("Something happened!")
else:

raise kopf.PermanentError("Bye-bye!")

If a permanent error is raised, the daemon will never be restarted again. Same as when the daemon exits on its own
(but this could be reconsidered in the future).

13.11 Filtering

It is also possible to use the existing Filtering to only spawn daemons for specific resources:

import time
import kopf

@kopf.daemon('kopfexamples',
annotations={'some-annotation': 'some-value'},
labels={'some-label': 'some-value'},
when=lambda name, **_: 'some' in name)

def monitor_selected_kexes(stopped, **kwargs):
while not stopped:

time.sleep(1)

Other (non-matching) resources of that kind will be ignored.

The daemons will be executed only while the filtering criteria are met. Both the resource’s state and the criteria can be
highly dynamic (e.g. due to when= callable filters or labels/annotations value callbacks).

Once the daemon stops matching the criteria (either because the resource or the criteria have been changed (e.g. for
when= callbacks)), the daemon is stopped. Once it matches the criteria again, it is re-spawned.

The checking is done only when the resource changes (any watch-event arrives). The criteria themselves are not re-
evaluated if nothing changes.

Warning: A daemon that is terminating is considered as still running, therefore it will not be re-spawned until it
fully terminates. It will be re-spawned the next time a watch-event arrives after the daemon has truly exited.

38 Chapter 13. Daemons

Kopf

13.12 System resources

Warning: A separate OS thread or asyncio task is started for each resource and each handler.

Having hundreds or thousands of OS threads or asyncio tasks can consume system resources significantly. Make
sure you only have daemons and timers with appropriate filters (e.g., by labels, annotations, or so).

For the same reason, prefer to use async handlers (with properly designed async/await code), since asyncio tasks
are somewhat cheaper than threads. See Async/Await for details.

13.12. System resources 39

Kopf

40 Chapter 13. Daemons

CHAPTER

FOURTEEN

TIMERS

Timers are schedules of regular handler execution as long as the object exists, no matter if there were any changes or
not – unlike the regular handlers, which are event-driven and are triggered only when something changes.

14.1 Intervals

The interval defines how often to trigger the handler (in seconds):

import asyncio
import time
import kopf

@kopf.timer('kopfexamples', interval=1.0)
def ping_kex(spec, **kwargs):

pass

14.2 Sharpness

Usually (by default), the timers are invoked with the specified interval between each call. The time taken by the handler
itself is not taken into account. It is possible to define timers with a sharp schedule: i.e. invoked every number of
seconds sharp, no matter how long it takes to execute it:

import asyncio
import time
import kopf

@kopf.timer('kopfexamples', interval=1.0, sharp=True)
def ping_kex(spec, **kwargs):

time.sleep(0.3)

In this example, the timer takes 0.3 seconds to execute. The actual interval between the timers will be 0.7 seconds in
the sharp mode: whatever is left of the declared interval of 1.0 seconds minus the execution time.

41

Kopf

14.3 Idling

Timers can be defined to idle if the resource changes too often, and only be invoked when it is stable for some time:

import asyncio
import kopf

@kopf.timer('kopfexamples', idle=10)
def ping_kex(spec, **kwargs):

print(f"FIELD={spec['field']}")

The creation of a resource is considered as a change, so idling also shifts the very first invocation by that time.

The default is to have no idle time, just the intervals.

It is possible to have a timer with both idling and interval. In that case, the timer will be invoked only if there were no
changes in the resource for the specified duration (idle time), and every N seconds after that (interval) as long as the
object does not change. Once changed, the timer will stop and wait for the new idling time:

import asyncio
import kopf

@kopf.timer('kopfexamples', idle=10, interval=1)
def ping_kex(spec, **kwargs):

print(f"FIELD={spec['field']}")

14.4 Postponing

Normally, timers are invoked immediately once resource becomes visible to the operator (unless idling is declared).

It is possible to postpone the invocations:

import asyncio
import time
import kopf

@kopf.timer('kopfexamples', interval=1, initial_delay=5)
def ping_kex(spec, **kwargs):

print(f"FIELD={spec['field']}")

This is similar to idling, except that it is applied only once per resource/operator lifecycle in the very beginning.

14.5 Combined timing

It is possible to combine all scheduled intervals to achieve the desired effect. For example, to give an operator 1 minute
for warming up, and then pinging the resources every 10 seconds if they are unmodified for 10 minutes:

import kopf

@kopf.timer('kopfexamples',
initial_delay=60, interval=10, idle=600)

(continues on next page)

42 Chapter 14. Timers

Kopf

(continued from previous page)

def ping_kex(spec, **kwargs):
pass

14.6 Errors in timers

The timers follow the standard error handling protocol: TemporaryError and arbitrary exceptions are treated accord-
ing to the errors, timeout, retries, backoff options of the handler. The kwargs retry, started , runtime are
provided too.

The default behaviour is to retry arbitrary error (similar to the regular resource handlers).

When an error happens, its delay overrides the timer’s schedule or life cycle:

• For arbitrary exceptions, the timer’s backoff=... option is used.

• For kopf.TemporaryError, the error’s delay=... option is used.

• For kopf.PermanentError, the timer stops forever and is not retried.

The timer’s own interval is only used if the function exits successfully.

For example, if the handler fails 3 times with a back-off time set to 5 seconds and the interval set to 10 seconds, it will
take 25 seconds (3*5+10) from the first execution to the end of the retrying cycle:

import kopf

@kopf.timer('kopfexamples',
errors=kopf.ErrorsMode.TEMPORARY, interval=10, backoff=5)

def monitor_kex_by_time(name, retry, **kwargs):
if retry < 3:

raise Exception()

It will be executed in that order:

• A new cycle begins: * 1st execution attempt fails (retry == 0). * Waits for 5 seconds (backoff). * 2nd
execution attempt fails (retry == 1). * Waits for 5 seconds (backoff). * 3rd execution attempt fails (retry
== 2). * Waits for 5 seconds (backoff). * 4th execution attempt succeeds (retry == 3). * Waits for 10
seconds (interval).

• A new cycle begins: * 5th execution attempt fails (retry == 0).

The timer never overlaps with itself. Though, multiple timers with different interval settings and execution schedules
can eventually overlap with each other and with event-driven handlers.

14.7 Results delivery

The timers follow the standard results delivery protocol: the returned values are put on the object’s status under the
handler’s id as a key.

import random
import kopf

@kopf.timer('kopfexamples', interval=10)
(continues on next page)

14.6. Errors in timers 43

Kopf

(continued from previous page)

def ping_kex(spec, **kwargs):
return random.randint(0, 100)

Note: Whenever a resulting value is serialised and put on the resource’s status, it modifies the resource, which, in
turn, resets the idle timer. Use carefully with both idling & returned results.

14.8 Filtering

It is also possible to use the existing Filtering:

import kopf

@kopf.timer('kopfexamples', interval=10,
annotations={'some-annotation': 'some-value'},
labels={'some-label': 'some-value'},
when=lambda name, **_: 'some' in name)

def ping_kex(spec, **kwargs):
pass

14.9 System resources

Warning: Timers are implemented the same way as asynchronous daemons (see Daemons) — via asyncio tasks
for every resource & handler.

Despite OS threads are not involved until the synchronous functions are invoked (through the asyncio executors),
this can lead to significant OS resource usage on large clusters with thousands of resources.

Make sure you only have daemons and timers with appropriate filters (e.g., by labels, annotations, or so).

44 Chapter 14. Timers

CHAPTER

FIFTEEN

ARGUMENTS

15.1 Forward compatibility kwargs

**kwargs is required in all handlers for the forward compatibility: the framework can add new keywords in the future,
and the existing handlers should accept them without breaking, even if they do not use them.

It can be named **_ to prevent the “unused variable” warnings by linters.

15.2 Retrying and timing

Most (but not all) of the handlers – such as resource change detection, resource daemons and timers, and activity
handlers – are capable of retrying their execution in case of errors (see also: Error handling). They provide kwargs
regarding the retrying process:

retry (int) is the sequential number of retry of this handler. For the first attempt, it is 0, so it can be used in expressions
like if not retry:

started (datetime.datetime) is the start time of the handler, in case of retries & errors – i.e. of the first attempt.

runtime (datetime.timedelta) is the duration of the handler run, in case of retries & errors – i.e. since the first
attempt.

15.3 Parametrization

param (any type, defaults to None) is a value passed from the same-named handler option param=. It can be helpful if
there are multiple decorators, possibly with multiple different selectors & filters, for one handler function:

import kopf

@kopf.on.create('KopfExample', param=1000)
@kopf.on.resume('KopfExample', param=100)
@kopf.on.update('KopfExample', param=10, field='spec.field')
@kopf.on.update('KopfExample', param=1, field='spec.items')
def count_updates(param, patch, **_):

patch.status['counter'] = body.status.get('counter', 0) + param

@kopf.on.update('Child1', param='first', field='status.done', new=True)
@kopf.on.update('Child2', param='second', field='status.done', new=True)
def child_updated(param, patch, **_):

patch_parent({'status': {param: {'done': True}}})

45

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Kopf

Note that Kopf deduplicates the handlers to execute on one single occasion by their underlying function and its id,
which includes the field name by default.

In this example below with overlapping criteria, if spec.field is updated, the handler will be called twice: one
time – for spec as a whole, another time – for spec.field in particular; each time with the proper values of
old/new/diff/param kwargs for those fields:

import kopf

@kopf.on.update('KopfExample', param=10, field='spec.field')
@kopf.on.update('KopfExample', param=1, field='spec')
def fn(param, **_):

pass

15.4 Operator configuration

settings is passed to activity handlers (but not to resource handlers).

It is an object with a predefined nested structure of containers with values, which defines the operator’s behaviour. See:
kopf.OperatorSettings.

It can be modified if needed (usually in the startup handlers). Every operator (if there are more than one in the same
process) has its config.

See also: Configuration.

15.5 Resource-related kwargs

15.5.1 Body parts

resource (kopf.Resource) is the actual resource being served as retrieved from the cluster during the initial discov-
ery. Please note that it is not necessary the same selector as used in the decorator, as one selector can match multiple
actual resources.

body is the handled object’s body, a read-only mapping (dict). It might look like this as an example:

{
'apiVersion': 'kopf.dev/v1',
'kind': 'KopfExample',
'metadata': {

'name': 'kopf-example-1',
'namespace': 'default',
'uid': '1234-5678-...',

},
'spec': {

'field': 'value',
},
'status': {

...
},

}

46 Chapter 15. Arguments

Kopf

spec, meta, status are aliases for relevant stanzas, and are live-views into body['spec'], body['metadata'],
body['status'].

namespace, name, uid can be used to identify the object being handled, and are aliases for the respective fields in
body['metadata']. If the values are not present for any reason (e.g. namespaced for cluster-scoped objects), the
fields are None – unlike accessing the same fields by key, when a KeyError is raised.

labels and annotations are equivalents of body['metadata']['labels'] and
body['metadata']['annotations'] if they exist. If not, these two behave as empty dicts.

15.5.2 Logging

logger is a per-object logger, with the messages prefixed with the object’s namespace/name.

Some of the log messages are also sent as Kubernetes events according to the log-level configuration (default is INFO,
WARNINGs, ERRORs).

15.5.3 Patching

patch is a mutable mapping (dict) with the object changes to be applied after the handler. It is actively used internally by
the framework itself, and is shared to the handlers for convenience _(since patching happens anyway in the framework,
why make separate API calls for patching?)_.

Note: Currently, it is just a dictionary, and the changes are applied as application/merge-patch+json: None
values delete the fields, other values override, dicts are merged.

In the future, at discretion of this framework, it can be converted to JSON-patch (a list of add/change/remove operation),
while keeping the same Python mutable mapping protocol and remembering the changes in the order they were made.

15.5.4 In-memory container

memo is an in-memory container for arbitrary runtime-only keys-values. The values can be accessed as either object
attributes or dictionary keys.

For resource handlers, memo is shared by all handlers of the same individual resource (not of the resource kind, but
of the resource object). For operator handlers, memo is shared by all handlers of the same operator and later used to
populate the resources’ memo containers.

See also:

In-memory containers and kopf.Memo.

15.5.5 In-memory indices

Indices are in-memory overviews of matching resources in the cluster. They are populated according to @kopf.index
handlers and their filters.

Each index is exposed in kwargs under its name (function name) or id (if overridden with id=). There is no global
structure to access all indices at once. If needed, use **kwargs itself.

Indices are available for all operator-level and all resource-level handlers. For resource handlers, they are guaranteed
to be populated before any handlers are invoked. For operator handlers, there is no such guarantee.

15.5. Resource-related kwargs 47

Kopf

See also:

In-memory indexing.

15.6 Resource-watching kwargs

For the resource watching handlers, an extra kwarg is provided:

15.6.1 API event

event is a raw JSON-decoded message received from Kubernetes API; it is a dict with ['type'] & ['object']
keys.

15.7 Resource-changing kwargs

Kopf provides functionality for change detection and triggers the handlers for those changes (not for every event coming
from the Kubernetes API). A few extra kwargs are provided for these handlers, exposing the changes:

15.7.1 Causation

reason is a type of change detection (creation, update, deletion, resuming). It is generally reflected in the handler
decorator used, but can be useful for the multi-purpose handlers pointing to the same function (e.g. for @kopf.on.
create + @kopf.on.resume pairs).

15.7.2 Diffing

old& new are the old & new state of the object or a field within the detected changes. The new state usually corresponds
to body.

For the whole-object handlers, new is an equivalent of body. For the field handlers, it is the value of that field specifi-
cally.

diff is a list of changes of the object between old & new states.

The diff highlights which keys were added, changed, or removed in the dictionary, with old & new values being se-
lectable, and generally ignores all other fields that were not changed.

Due to specifics of Kubernetes, None is interpreted as absence of the value/field, not as a value of its own kind. In case
of diffs, it means that the value did not exist before, or will not exist after the changes (for the old & new value positions
respectively):

48 Chapter 15. Arguments

Kopf

15.8 Resource daemon kwargs

15.8.1 Stop-flag

Daemons also have stopped. It is a flag object for sync & async daemons (mostly, sync) to check if they should stop.
See also: DaemonStopped.

To check, .is_set() method can be called, or the object itself can be used as a boolean expression: e.g. while not
stopped:

Its .wait() method can be used to replace time.sleep() or asyncio.sleep() for faster (instant) termination on
resource deletion.

See more: Daemons.

15.9 Resource admission kwargs

15.9.1 Dry run

Admission handlers, both validating and mutating, must skip any side effects if dryrun is True. It is True when a
dry-run API request is made, e.g. with kubectl --dry-run=server

Regardless of dryrun, the handlers must not make any side effects unless they declare themselves as
side_effects=True.

See more: Admission control.

15.9.2 Subresources

subresource (str|None) is the name of a subresource being checked. Nonemeans that the main body of the resource
is being checked. Otherwise, it is usually "status" or "scale"; other values are possible. (The value is never "*",
as the star mask is used only for handler filters.)

See more: Admission control.

15.9.3 Admission warnings

warnings (list[str]) is a mutable list of string used as warnings. The admission webhook handlers can populate
the list with warnings (strings), and the webhook servers/tunnels return them to Kubernetes, which shows them to
kubectl.

See more: Admission control.

15.8. Resource daemon kwargs 49

Kopf

15.9.4 User information

userinfo (Mapping[str, Any]) is an information about a user that sends the API request to Kubernetes.

It usually contains the keys 'username', 'uid', 'groups', but this might change in the future. The information is
provided exactly as Kubernetes sends it in the admission request.

See more: Admission control.

15.9.5 Request credentials

For rudimentary authentication and authorization, Kopf passes the information from the admission requests to the
admission handlers as is, without additional interpretation of it.

headers (Mapping[str, str]) contains all HTTPS request headers, including Authorization: Basic ...,
Authorization: Bearer

sslpeer (Mapping[str, Any]) contains the SSL peer information as returned by ssl.SSLSocket.
getpeercert(). It is None if no proper SSL client certificate was provided (i.e. by apiservers talking to
webhooks), or if the SSL protocol could not verify the provided certificate with its CA.

Note: This is an identity of the apiservers that send the admission request, not of the user or an app that sends the API
request to Kubernetes. For the user’s identity, use userinfo.

See more: Admission control.

50 Chapter 15. Arguments

CHAPTER

SIXTEEN

ASYNC/AWAIT

Kopf supports asynchronous handler functions:

import asyncio
import kopf

@kopf.on.create('kopfexamples')
async def create_fn(spec, **_):

await asyncio.sleep(1.0)

Async functions have an additional benefit over the non-async ones to make the full stack trace available when excep-
tions occur or IDE breakpoints are used since the async functions are executed directly inside of Kopf’s event loop in
the main thread.

Regular synchronous handlers, despite supported for convenience, are executed in parallel threads (via the default
executor of the loop), and can only see the stack traces up to the thread entry point.

Warning: As with any async coroutines, it is the developer’s responsibility to make sure that all the internal
function calls are either awaits of other async coroutines (e.g. await asyncio.sleep()), or the regular non-
blocking functions calls.

Calling a synchronous function (e.g. HTTP API calls or time.sleep()) inside of an asynchronous function will
block the whole operator process until the synchronous call if finished, i.e. even other resources processed in
parallel, and the Kubernetes event-watching/-queueing cycles.

This can come unnoticed in the development environment with only a few resources and no external timeouts, but
can hit hard in the production environments with high load.

51

Kopf

52 Chapter 16. Async/Await

CHAPTER

SEVENTEEN

LOADING AND IMPORTING

Kopf requires the source files with the handlers on the command line. It does not do any attempts to guess the user’s
intentions or to introduce any conventions (at least, now).

There are two ways to specify them (both mimicking the Python interpreter):

• Direct script files:

kopf run file1.py file2.py

• Importable modules:

kopf run -m package1.module1 -m package2.module2

• Or mixed:

kopf run file1.py file2.py -m package1.module1 -m package2.module2

Which way to use depends on how the source code is structured, and is out of the scope of Kopf.

Each of the mentioned files and modules will be imported. The handlers should be registered during the import. This
is usually done by using the function decorators — see Handlers.

53

Kopf

54 Chapter 17. Loading and importing

CHAPTER

EIGHTEEN

RESOURCE SPECIFICATION

The following notations are supported to specify the resources to be handled. As a rule of thumb, they are designed so
that the intentions of a developer are guessed the best way possible, and similar to kubectl semantics.

The resource name is always expected in the first place as the rightmost value. The remaining parts are considered as
an API group and an API version of the resource – given as either two separate strings, or as one, but separated with a
slash:

@kopf.on.event('kopf.dev', 'v1', 'kopfexamples')
@kopf.on.event('kopf.dev/v1', 'kopfexamples')
@kopf.on.event('apps', 'v1', 'deployments')
@kopf.on.event('apps/v1', 'deployments')
@kopf.on.event('', 'v1', 'pods')
def fn(**_):

pass

If only one API specification is given (except for v1), it is treated as an API group, and the preferred API version of
that API group is used:

@kopf.on.event('kopf.dev', 'kopfexamples')
@kopf.on.event('apps', 'deployments')
def fn(**_):

pass

It is also possible to specify the resources with kubectl’s semantics:

@kopf.on.event('kopfexamples.kopf.dev')
@kopf.on.event('deployments.apps')
def fn(**_):

pass

One exceptional case is v1 as the API specification: it corresponds to K8s’s legacy core API (before API groups
appeared), and is equivalent to an empty API group name. The following specifications are equivalent:

@kopf.on.event('v1', 'pods')
@kopf.on.event('', 'v1', 'pods')
def fn(**_):

pass

If neither the API group nor the API version is specified, all resources with that name would match regardless of the
API groups/versions. However, it is reasonable to expect only one:

55

Kopf

@kopf.on.event('kopfexamples')
@kopf.on.event('deployments')
@kopf.on.event('pods')
def fn(**_):

pass

In all examples above, where the resource identifier is expected, it can be any name: plural, singular, kind, or a short
name. As it is impossible to guess which one is which, the name is remembered as is, and is later checked for all
possible names of the specific resources once those are discovered:

@kopf.on.event('kopfexamples')
@kopf.on.event('kopfexample')
@kopf.on.event('KopfExample')
@kopf.on.event('kex')
@kopf.on.event('StatefulSet')
@kopf.on.event('deployments')
@kopf.on.event('pod')
def fn(**_):

pass

The resource specification can be more specific on which name to match:

@kopf.on.event(kind='KopfExample')
@kopf.on.event(plural='kopfexamples')
@kopf.on.event(singular='kopfexample')
@kopf.on.event(shortcut='kex')
def fn(**_):

pass

The whole categories of resources can be served, but they must be explicitly specified to avoid unintended conse-
quences:

@kopf.on.event(category='all')
def fn(**_):

pass

Note that the conventional category all does not really mean all resources, but only those explicitly added to this
category; some built-in resources are excluded (e.g. ingresses, secrets).

To handle all resources in an API group/version, use a special marker instead of the mandatory resource name:

@kopf.on.event('kopf.dev', 'v1', kopf.EVERYTHING)
@kopf.on.event('kopf.dev/v1', kopf.EVERYTHING)
@kopf.on.event('kopf.dev', kopf.EVERYTHING)
def fn(**_):

pass

As a consequence of the above, to handle every resource in the cluster – which might be not the best idea per se, but is
technically possible – omit the API group/version, and use the marker only:

@kopf.on.event(kopf.EVERYTHING)
def fn(**_):

pass

Serving everything is better when it is used with filters:

56 Chapter 18. Resource specification

Kopf

@kopf.on.event(kopf.EVERYTHING, labels={'only-this': kopf.PRESENT})
def fn(**_):

pass

Note: Core v1 events are excluded from EVERYTHING: they are created during handling of other resources in the
implicit Events from log messages, so they would cause unnecessary handling cycles for every essential change.

To handle core v1 events, they must be named explicitly, e.g. like this:

@kopf.on.event('v1', 'events')
def fn(**_):

pass

The resource specifications do not support multiple values, masks or globs. To handle multiple independent resources,
add multiple decorators to the same handler function – as shown above. The handlers are deduplicated by the underlying
function and its handler id (which, in turn, equals to the function’s name by default unless overridden), so one function
will never be triggered multiple times for the same resource if there are some accidental overlaps in the specifications.

Warning: Kopf tries to make it easy to specify resources a la kubectl. However, some things cannot be made that
easy. If resources are specified ambiguously, i.e. if 2+ resources of different API groups match the same resource
specification, neither of them will be served, and a warning will be issued.

This only applies to resource specifications where it is intended to have a specific resource by its name; specifications
with intentional multi-resource mode are served as usually (e.g. by categories).

However, v1 resources have priority over all other resources. This resolves the conflict of pods.v1 vs. pods.
v1beta1.metrics.k8s.io, so just "pods" can be specified and the intention will be understood.

This mimics the behaviour of kubectl, where such API priorities are hard-coded.

While it might be convenient to write short forms of resource names, the proper way is to always add at least an
API group:

import kopf

@kopf.on.event('pods') # NOT SO GOOD, ambiguous, though works
@kopf.on.event('pods.v1') # GOOD, specific
@kopf.on.event('v1', 'pods') # GOOD, specific
@kopf.on.event('pods.metrics.k8s.io') # GOOD, specific
@kopf.on.event('metrics.k8s.io', 'pods') # GOOD, specific
def fn(**_):

pass

Keep the short forms only for prototyping and experimentation mode, and for ad-hoc operators with custom re-
sources (not reusable and running in controlled clusters where no other similar resources can be defined).

Warning: Some API groups are served by API extensions: e.g. metrics.k8s.io. If the extension’s deploy-
ment/service/pods are down, such a group will not be scannable (failing with “HTTP 503 Service Unavailable”)
and will block scanning the whole cluster if resources are specified with no group name (e.g. ('pods') instead of
('v1', 'pods')).

To avoid scanning the whole cluster and all (even unused) API groups, it is recommended to specify at least the

57

https://github.com/kubernetes/kubernetes/blob/323f34858de18b862d43c40b2cced65ad8e24052/staging/src/k8s.io/client-go/restmapper/discovery.go#L47-L49

Kopf

group names for all resources, especially in reusable and publicly distributed operators.

58 Chapter 18. Resource specification

CHAPTER

NINETEEN

FILTERING

Handlers can be restricted to only the resources that match certain criteria.

Multiple criteria are joined with AND, i.e. they all must be satisfied.

Unless stated otherwise, the described filters are available for all handlers: resuming, creation, deletion, updating,
event-watching, timers, daemons, or even to sub-handlers (thus eliminating some checks in its parent’s code).

There are only a few kinds of checks:

• Specific values – expressed with Python literals such as "a string".

• Presence of values – with special markers kopf.PRESENT/kopf.ABSENT.

• Per-value callbacks – with anything callable which evaluates to true/false.

• Whole-body callbacks – with anything callable which evaluates to true/false.

But there are multiple places where these checks can be applied, each has its specifics.

19.1 Metadata filters

Metadata is the most commonly filtered aspect of the resources.

Match only when the resource’s label or annotation has a specific value:

@kopf.on.create('kopfexamples',
labels={'some-label': 'somevalue'},
annotations={'some-annotation': 'somevalue'})

def my_handler(spec, **_):
pass

Match only when the resource has a label or an annotation with any value:

@kopf.on.create('kopfexamples',
labels={'some-label': kopf.PRESENT},
annotations={'some-annotation': kopf.PRESENT})

def my_handler(spec, **_):
pass

Match only when the resource has no label or annotation with that name:

@kopf.on.create('kopfexamples',
labels={'some-label': kopf.ABSENT},
annotations={'some-annotation': kopf.ABSENT})

(continues on next page)

59

Kopf

(continued from previous page)

def my_handler(spec, **_):
pass

Note that empty strings in labels and annotations are treated as regular values, i.e. they are considered as present on
the resource.

19.2 Field filters

Specific fields can be checked for specific values or presence/absence, similar to the metadata filters:

@kopf.on.create('kopfexamples', field='spec.field', value='world')
def created_with_world_in_field(**_):

pass

@kopf.on.create('kopfexamples', field='spec.field', value=kopf.PRESENT)
def created_with_field(**_):

pass

@kopf.on.create('kopfexamples', field='spec.no-field', value=kopf.ABSENT)
def created_without_field(**_):

pass

When the value= filter is not specified, but the field= filter is, it is equivalent to value=kopf.PRESENT, i.e. the
field must be present with any value (for update handlers: present before or after the change).

@kopf.on.create('kopfexamples', field='spec.field')
def created_with_field(**_):

pass

@kopf.on.update('kopfexamples', field='spec.field')
def field_is_affected(old, new, **_):

pass

Since the field name is part of the handler id (e.g., "fn/spec.field"), multiple decorators can be defined to react to
different fields with the same function and it will be invoked multiple times with different old & new values relevant to
the specified fields, so as different values of param :

@kopf.on.update('kopfexamples', field='spec.field', param='fld')
@kopf.on.update('kopfexamples', field='spec.items', param='itm')
def one_of_the_fields_is_affected(old, new, **_):

pass

However, different causes –mostly resuming + one of creation/update/deletion– will not be distinguished, so e.g. re-
sume+create pair with the same field will be called only once.

Due to the special nature of update handlers (@on.update, @on.field), described in a note below, this filtering
semantics is extended for them:

The field= filter restricts the update-handlers to cases when the specified field is in any way affected: changed, added
or removed to/from the resource. When the specified field is not affected, but something else is changed, such update-
handlers are not invoked even if they do match the field criteria.

60 Chapter 19. Filtering

Kopf

The value= filter applies to either the old or the new value: i.e. if any of them satisfies the value criterion. This covers
both sides of the state transition: when the value criterion has just been satisfied (though was not satisfied before),
or when the value criterion was satisfied before (but stopped being satisfied). For the latter case, it means that the
transitioning resource still satisfies the filter in its “old” state.

Note: Technically, the update handlers are called after the change has already happened on the low level – i.e. when
the field already has the new value.

Semantically, the update handlers are only initiated by this change, but are executed before the current (new) state is
processed and persisted, thus marking the end of the change processing cycle – i.e. they are called in-between the old
and new states, and therefore belong to both of them.

In general, the resource-changing handlers are an abstraction on top of the low-level K8s machinery for eventual
processing of such state transitions, so their semantics can differ from K8s’s low-level semantics. In most cases, this
is not visible or important to the operator developers, except for such cases, where it might affect the semantics of e.g.
filters.

For reacting to unrelated changes of other fields while this field satisfies the criterion, use when= instead of field=/
value=.

For reacting to only the cases when the desired state is reached but not when the desired state is lost, use new= with the
same criterion; similarly, for the cases when the desired state is only lost, use old=.

For all other handlers with no concept of “updating” and being in-between of two equally valid and applicable states,
the field=/value= filters check the resource in its current –and the only– state. The handlers are being invoked and
the daemons are running as long as the field and the value match the criterion.

19.3 Change filters

The update handlers (specifically, @kopf.on.update and @kopf.on.field) check the value= filter against both old
& new values, which might be not what is intended. For more precision on filtering, the old/new values can be checked
separately with the old=/new= filters with the same filtering methods/markers as all other filters.

@kopf.on.update('kopfexamples', field='spec.field', old='x', new='y')
def field_is_edited(**_):

pass

@kopf.on.update('kopfexamples', field='spec.field', old=kopf.ABSENT, new=kopf.PRESENT)
def field_is_added(**_):

pass

@kopf.on.update('kopfexamples', field='spec.field', old=kopf.PRESENT, new=kopf.ABSENT)
def field_is_removed(**_):

pass

If one of old= or new= is not specified (or set to None), that part is not checked, but the other (specified) part is still
checked:

Match when the field reaches a specific value either by being edited/patched to it or by adding it to the resource (i.e.
regardless of the old value):

@kopf.on.update('kopfexamples', field='spec.field', new='world')
def hello_world(**_):

pass

19.3. Change filters 61

Kopf

Match when the field loses a specific value either by being edited/patched to something else, or by removing the field
from the resource:

@kopf.on.update('kopfexamples', field='spec.field', old='world')
def goodbye_world(**_):

pass

Generally, the update handlers with old=/new= filters are invoked only when the field’s value is changed, and are not
invoked when it remains the same.

For clarity, “a change” means not only an actual change of the value, but also a change in the field’s presence or absence
in the resource.

If none of the old=/new=/value= filters is specified, the handler is invoked if the field is affected in any way, i.e. if it
was modified, added, or removed. This is the same behaviour as with the unspecified value= filter.

Note: value= is currently made to be mutually exclusive with old=/new=: only one filtering method can be used; if
both methods are used together, it would be ambiguous. This can be reconsidered in the future.

19.4 Value callbacks

Instead of specific values or special markers, all the value-based filters can use arbitrary per-value callbacks (as an
advanced use-case for advanced logic).

The value callbacks must receive the same keyword arguments as the respective handlers (with **kwargs/**_ for
forwards compatibility), plus one positional (not keyword!) argument with the value being checked. The passed value
will be None if the value is absent in the resource.

def check_value(value, spec, **_):
return value == 'some-value' and spec.get('field') is not None

@kopf.on.create('kopfexamples',
labels={'some-label': check_value},
annotations={'some-annotation': check_value})

def my_handler(spec, **_):
pass

19.5 Callback filters

The resource callbacks must receive the same keyword arguments as the respective handlers (with **kwargs/**_ for
forwards compatibility).

def is_good_enough(spec, **_):
return spec.get('field') in spec.get('items', [])

@kopf.on.create('kopfexamples', when=is_good_enough)
def my_handler(spec, **_):

pass

@kopf.on.create('kopfexamples', when=lambda spec, **_: spec.get('field') in spec.get(
(continues on next page)

62 Chapter 19. Filtering

Kopf

(continued from previous page)

→˓'items', []))
def my_handler(spec, **_):

pass

There is no need for the callback filters to only check the resource’s content. They can filter by any kwarg data, e.g. by
a reason of this invocation, remembered memo values, etc. However, it is highly recommended that the filters do not
modify the state of the operator – keep it for handlers.

19.6 Callback helpers

Kopf provides several helpers to combine multiple callbacks into one (the semantics is the same as for Python’s built-in
functions):

import kopf

def whole_fn1(name, **_): return name.startswith('kopf-')
def whole_fn2(spec, **_): return spec.get('field') == 'value'
def value_fn1(value, **_): return value.startswith('some')
def value_fn2(value, **_): return value.endswith('label')

@kopf.on.create('kopfexamples',
when=kopf.all_([whole_fn1, whole_fn2]),
labels={'somelabel': kopf.all_([value_fn1, value_fn2])})

def create_fn1(**_):
pass

@kopf.on.create('kopfexamples',
when=kopf.any_([whole_fn1, whole_fn2]),
labels={'somelabel': kopf.any_([value_fn1, value_fn2])})

def create_fn2(**_):
pass

The following wrappers are available:

• kopf.not_(fn) – the function must return False to pass the filters.

• kopf.any_([...]) – at least one of the functions must return True.

• kopf.all_([...]) – all of the functions must return True.

• kopf.none_([...]) – all of the functions must return False.

19.7 Stealth mode

Note: Please note that if an object does not match any filters of any handlers for its resource kind, there will be no
messages logged and no annotations stored on the object. Such objects are processed in the stealth mode even if the
operator technically sees them in the watch-stream.

As the result, when the object is updated to match the filters some time later (e.g. by putting labels/annotations on it,
or changing its spec), this will not be considered as an update but as a creation.

19.6. Callback helpers 63

Kopf

From the operator’s point of view, the object has suddenly appeared in sight with no diff-base, which means that it is a
newly created object; so, the on-creation handlers will be called instead of the on-update ones.

This behaviour is correct and reasonable from the filtering logic side. If this is a problem, then create a dummy handler
without filters (e.g. a field-handler for a non-existent field) – this will make all the objects always being in the scope
of the operator, even if the operator did not react to their creation/update/deletion, and so the diff-base annotations
(“last-handled-configuration”, etc) will be always added on the actual object creation, not on scope changes.

64 Chapter 19. Filtering

CHAPTER

TWENTY

RESULTS DELIVERY

All handlers can return arbitrary JSON-serializable values. These values are then put to the resource status under the
name of the handler:

import kopf

@kopf.on.create('kopfexamples')
def create_kex_1(**_):

return 100

@kopf.on.create('kopfexamples')
def create_kex_2(uid, **_):

return {'r1': random.randint(0, 100), 'r2': random.randint(100, 999)}

These results can be seen in the object’s content:

$ kubectl get -o yaml kex kopf-example-1

...
status:
create_kex_1: 100
create_kex_2:
r1: 66
r2: 666

The function results can be used to communicate between handlers through resource itself, assuming that handlers do
not know in which order they will be invoked (due to error handling and retrying), and to be able to restore in case of
operator failures & restarts:

import kopf
import pykube

@kopf.on.create('kopfexamples')
def create_job(status, **_):

if not status.get('create_pvc', {}):
raise kopf.TemporaryError("PVC is not created yet.", delay=10)

pvc_name = status['create_pvc']['name']

api = pykube.HTTPClient(pykube.KubeConfig.from_env())
obj = pykube.Job(api, {...}) # use pvc_name here
obj.create()

(continues on next page)

65

Kopf

(continued from previous page)

return {'name': obj.name}

@kopf.on.create('kopfexamples')
def create_pvc(**_):

api = pykube.HTTPClient(pykube.KubeConfig.from_env())
obj = pykube.PersistentVolumeClaim(api, {...})
obj.create()
return {'name': obj.name}

Note: In this example, the handlers are intentionally put in such an order that the first handler always fails on the
first attempt. Having them in the proper order (PVC first, Job afterwards) will make it work smoothly for most of the
cases, until PVC creation fails for any temporary reason and has to be retried. The whole thing will eventually succeed
anyway in 1-2 additional retries, just with less friendly messages and stack traces.

66 Chapter 20. Results delivery

CHAPTER

TWENTYONE

ERROR HANDLING

Kopf tracks the status of the handlers (except for the low-level event handlers) catches the exceptions, and processes
them from each of the handlers.

The last (or the final) exception is stored in the object’s status, and reported via the object’s events.

Note: Keep in mind, the Kubernetes events are often garbage-collected fast, e.g. less than 1 hour, so they are visible
only soon after they are added. For persistence, the errors are also stored on the object’s status.

21.1 Temporary errors

If an exception raised inherits from kopf.TemporaryError, it will postpone the current handler for the next iteration,
which can happen either immediately, or after some delay:

import kopf

@kopf.on.create('kopfexamples')
def create_fn(spec, **_):

if not is_data_ready():
raise kopf.TemporaryError("The data is not yet ready.", delay=60)

In that case, there is no need to sleep in the handler explicitly, thus blocking any other events, causes, and generally any
other handlers on the same object from being handled (such as deletion or parallel handlers/sub-handlers).

Note: The multiple handlers and the sub-handlers are implemented via this kind of errors: if there are handlers left
after the current cycle, a special retriable error is raised, which marks the current cycle as to be retried immediately,
where it continues with the remaining handlers.

The only difference is that this special case produces fewer logs.

67

Kopf

21.2 Permanent errors

If a raised exception inherits from kopf.PermanentError, the handler is considered as non-retriable and non-
recoverable and completely failed.

Use this when the domain logic of the application means that there is no need to retry over time, as it will not become
better:

import kopf

@kopf.on.create('kopfexamples')
def create_fn(spec, **_):

valid_until = datetime.datetime.fromisoformat(spec['validUntil'])
if valid_until <= datetime.datetime.now(datetime.timezone.utc):

raise kopf.PermanentError("The object is not valid anymore.")

See also: Excluding handlers forever to prevent handlers from being invoked for the future change-sets even after the
operator restarts.

21.3 Regular errors

Kopf assumes that any arbitrary errors (i.e. not kopf.TemporaryError and not kopf.PermanentError) are the
environment’s issues and can self-resolve after some time.

As such, as default behaviour, Kopf retries the handlers with arbitrary errors infinitely until the handlers either succeed
or fail permanently.

The reaction to the arbitrary errors can be configured:

import kopf

@kopf.on.create('kopfexamples', errors=kopf.ErrorsMode.PERMANENT)
def create_fn(spec, **_):

raise Exception()

Possible values of errors are:

• kopf.ErrorsMode.TEMPORARY (the default).

• kopf.ErrorsMode.PERMANENT (prevent retries).

• kopf.ErrorsMode.IGNORED (same as in the resource watching handlers).

21.4 Timeouts

The overall runtime of the handler can be limited:

import kopf

@kopf.on.create('kopfexamples', timeout=60*60)
def create_fn(spec, **_):

raise kopf.TemporaryError(delay=60)

68 Chapter 21. Error handling

Kopf

If the handler is not succeeded within this time, it is considered as fatally failed.

If the handler is an async coroutine and it is still running at the moment, an asyncio.TimeoutError is raised; there
is no equivalent way of terminating the synchronous functions by force.

By default, there is no timeout, so the retries continue forever.

21.5 Retries

The number of retries can be limited too:

import kopf

@kopf.on.create('kopfexamples', retries=3)
def create_fn(spec, **_):

raise Exception()

Once the number of retries is reached, the handler fails permanently.

By default, there is no limit, so the retries continue forever.

21.6 Backoff

The interval between retries on arbitrary errors, when an external environment is supposed to recover and be able to
succeed the handler execution, can be configured:

import kopf

@kopf.on.create('kopfexamples', backoff=30)
def create_fn(spec, **_):

raise Exception()

The default is 60 seconds.

Note: This only affects the arbitrary errors. When TemporaryError is explicitly used, the delay should be configured
with delay=....

21.5. Retries 69

https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError

Kopf

70 Chapter 21. Error handling

CHAPTER

TWENTYTWO

SCOPES

22.1 Namespaces

An operator can be restricted to handle custom resources in one namespace only:

kopf run --namespace=some-namespace ...
kopf run -n some-namespace ...

Multiple namespaces can be served:

kopf run --namespace=some-namespace --namespace=another-namespace ...
kopf run -n some-namespace -n another-namespace ...

Namespace globs with * and ? characters can be used too:

kopf run --namespace=*-pr-123-* ...
kopf run -n *-pr-123-* ...

Namespaces can be negated: all namespaces are served except those excluded:

kopf run --namespace=!*-pr-123-* ...
kopf run -n !*-pr-123-* ...

Multiple globs can be used in one pattern. The rightmost matching one wins. The first glob is decisive: if a namespace
does not match it, it does not match the whole pattern regardless of what is there (other globs are not checked). If the
first glob is a negation, it is implied that initially, all namespaces do match (as if preceded by *), and then the negated
ones are excluded.

In this artificial example, myapp-live will match, myapp-pr-456 will not match, but myapp-pr-123 will match;
otherapp-live will not match; even otherapp-pr-123 will not match despite the -pr-123 suffix in it because it
does not match the initial decisive glob:

kopf run --namespace=myapp-*,!*-pr-*,*-pr-123 ...

In all cases, the operator monitors the namespaces that exist at the startup or are created/deleted at runtime, and
starts/stops serving them accordingly.

If there are no permissions to list/watch the namespaces, the operator falls back to the list of provided namespaces “as
is”, assuming they exist. Namespace patterns do not work in this case; only the specific namespaces do (which means,
all namespaces with the ,*?! characters are excluded).

If a namespace does not exist, Kubernetes permits watching over it anyway. The only difference is when the resource
watching starts: if the permissions are sufficient, the watching starts only after the namespace is created; if not sufficient,

71

https://github.com/kubernetes/kubernetes/issues/75537

Kopf

the watching starts immediately (for an unexistent namespace) and the resources will be served once that namespace is
created.

22.2 Cluster-wide

To serve the resources in the whole cluster:

kopf run --all-namespaces ...
kopf run -A ...

In that case, the operator does not monitor the namespaces in the cluster, and uses different K8s API URLs to list/watch
the objects cluster-wide.

72 Chapter 22. Scopes

CHAPTER

TWENTYTHREE

IN-MEMORY CONTAINERS

Kopf provides several ways of storing and exchanging the data in-memory between handlers and operators.

23.1 Resource memos

Every resource handler gets a memo kwarg of type kopf.Memo. It is an in-memory container for arbitrary runtime-only
keys-values. The values can be accessed as either object attributes or dictionary keys.

The memo is shared by all handlers of the same individual resource (not of the resource kind, but a resource object). If
the resource is deleted and re-created with the same name, the memo is also re-created (technically, it is a new resource).

import kopf

@kopf.on.event('KopfExample')
def pinged(memo: kopf.Memo, **_):

memo.counter = memo.get('counter', 0) + 1

@kopf.timer('KopfExample', interval=10)
def tick(memo: kopf.Memo, logger, **_):

logger.info(f"{memo.counter} events have been received in 10 seconds.")
memo.counter = 0

23.2 Operator memos

In the operator handlers, such as the operator startup/cleanup, liveness probes, credentials retrieval, and everything else
not specific to resources, memo points to the operator’s global container for arbitrary values.

The per-operator container can be either populated in the startup handlers, or passed from outside of the operator when
Embedding is used, or both:

import kopf
import queue
import threading

@kopf.on.startup()
def start_background_worker(memo: kopf.Memo, **_):

memo.my_queue = queue.Queue()
memo.my_thread = threading.Thread(target=background, args=(memo.my_queue,))
memo.my_thread.start()

(continues on next page)

73

Kopf

(continued from previous page)

@kopf.on.cleanup()
def stop_background_worker(memo: kopf.Memo, **_):

memo['my_queue'].put(None)
memo['my_thread'].join()

def background(queue: queue.Queue):
while True:

item = queue.get()
if item is None:

break
else:

print(item)

Note: For code quality and style consistency, it is recommended to use the same approach when accessing the stored
values. The mixed style here is for demonstration purposes only.

The operator’s memo is later used to populate the per-resource memos. All keys & values are shallow-copied into each
resource’s memo, where they can be mixed with the per-resource values:

... continued from the previous example.
@kopf.on.event('KopfExample')
def pinged(memo: kopf.Memo, namespace: str, name: str, **_):

if not memo.get('is_seen'):
memo.my_queue.put(f"{namespace}/{name}")
memo.is_seen = True

Any changes to the operator’s container since the first appearance of the resource are not replicated to the existing
resources’ containers, and are not guaranteed to be seen by the new resources (even if they are now).

However, due to shallow copying, the mutable objects (lists, dicts, and even custom instances of kopf.Memo itself) in
the operator’s container can be modified from outside, and these changes will be seen in all individual resource handlers
& daemons which use their per-resource containers.

23.3 Custom memo classes

For embedded operators (Embedding), it is possible to use any class for memos. It is not even required to inherit from
kopf.Memo.

There are 2 strict requirements:

• The class must be supported by all involved handlers that use it.

• The class must support shallow copying via copy.copy() (__copy__()).

The latter is used to create per-resource memos from the operator’s memo. To have one global memo for all individual
resources, redefine the class to return self when requested to make a copy, as shown below:

import asyncio
import dataclasses
import kopf

(continues on next page)

74 Chapter 23. In-memory containers

https://docs.python.org/3/library/copy.html#copy.copy

Kopf

(continued from previous page)

@dataclasses.dataclass()
class CustomContext:

create_tpl: str
delete_tpl: str

def __copy__(self) -> "CustomContext":
return self

@kopf.on.create('kopfexamples')
def create_fn(memo: CustomContext, **kwargs):

print(memo.create_tpl.format(**kwargs))

@kopf.on.delete('kopfexamples')
def delete_fn(memo: CustomContext, **kwargs):

print(memo.delete_tpl.format(**kwargs))

if __name__ == '__main__':
kopf.configure(verbose=True)
asyncio.run(kopf.operator(

memo=CustomContext(
create_tpl="Hello, {name}!",
delete_tpl="Good bye, {name}!",

),
))

In all other regards, the framework does not use memos for its own needs and passes them through the call stack to the
handlers and daemons “as is”.

This advanced feature is not available for operators executed via kopf run.

23.4 Limitations

All in-memory values are lost on operator restarts; there is no persistence.

The in-memory containers are recommended only for ephemeral objects scoped to the process lifetime, such as con-
currency primitives: locks, tasks, threads. . . For persistent values, use the status stanza or annotations of the resources.

Essentially, the operator’s memo is not much different from global variables (unless 2+ embedded operator tasks are
running there) or asyncio contextvars, except that it provides the same interface as for the per-resource memos.

See also:

In-memory indexing — other in-memory structures with similar limitations.

23.4. Limitations 75

Kopf

76 Chapter 23. In-memory containers

CHAPTER

TWENTYFOUR

IN-MEMORY INDEXING

Indexers automatically maintain in-memory overviews of resources (indices), grouped by keys that are usually calcu-
lated based on these resources.

The indices can be used for cross-resource awareness: e.g., when a resource of kind X is changed, it can get all the
information about all resources of kind Y without talking to the Kubernetes API. Under the hood, the centralised watch-
streams —one per resource kind— are more efficient in gathering the information than individual listing requests.

24.1 Index declaration

Indices are declared with a @kopf.index decorator on an indexing function (all standard filters are supported — see
Filtering):

import kopf

@kopf.index('pods')
def my_idx(**_):

...

The name of the function or its id= option is the index’s name.

The indices are then available to all resource- and operator-level handlers as the direct kwargs named the same as the
index (type hints are optional):

import kopf

... continued from previous examples:
@kopf.timer('KopfExample', interval=5)
def tick(my_idx: kopf.Index, **_):

...

@kopf.on.probe()
def metric(my_idx: kopf.Index, **_):

...

When a resource is created or starts matching the filters, it is processed by all relevant indexing functions, and the result
is put into the indices.

When a previously indexed resource is deleted or stops matching the filters, all associated values are removed (so are
all empty collections after this — to keep the indices clean).

77

Kopf

See also:

Health-checks for probing handlers in the example above.

24.2 Index structure

An index is always a read-only mapping of type kopf.Index with arbitrary keys leading to collections of type kopf.
Store, which in turn contain arbitrary values generated by the indexing functions. The index is initially empty. The
collections are never empty (empty collections are removed when the last item in them is removed).

For example, if several individual resources return the following results from the same indexing function, then the index
gets the following structure (shown in the comment below the code):

return {'key1': 'valueA'} # 1st
return {'key1': 'valueB'} # 2nd
return {'key2': 'valueC'} # 3rd
{'key1': ['valueA', 'valueB'],
'key2': ['valueC']}

The indices are not nested. The 2nd-level mapping in the result is stored as a regular value:

return {'key1': 'valueA'} # 1st
return {'key1': 'valueB'} # 2nd
return {'key2': {'key3': 'valueC'}} # 3rd
{'key1': ['valueA', 'valueB'],
'key2': [{'key3': 'valueC'}]}

24.3 Index content

When an indexing function returns a dict (strictly dict! not a generic mapping, not even a descendant of dict, such
as kopf.Memo), it is merged into the index under the key taken from the result:

import kopf

@kopf.index('pods')
def string_keys(namespace, name, **_):

return {namespace: name}
{'namespace1': ['pod1a', 'pod1b', ...],
'namespace2': ['pod2a', 'pod2b', ...],
...]

Multi-value keys are possible with e.g. tuples or other hashable types:

import kopf

@kopf.index('pods')
def tuple_keys(namespace, name, **_):

return {(namespace, name): 'hello'}
{('namespace1', 'pod1a'): ['hello'],
('namespace1', 'pod1b'): ['hello'],
('namespace2': 'pod2a'): ['hello'],

(continues on next page)

78 Chapter 24. In-memory indexing

Kopf

(continued from previous page)

('namespace2', 'pod2b'): ['hello'],
...}

Multiple keys can be returned at once for a single resource. They are all merged into their relevant places in the index:

import kopf

@kopf.index('pods')
def by_label(labels, name, **_):

return {(label, value): name for label, value in labels.items()}
{('label1', 'value1a'): ['pod1', 'pod2', ...],
('label1', 'value1b'): ['pod3', 'pod4', ...],
('label2', 'value2a'): ['pod5', 'pod6', ...],
('label2', 'value2b'): ['pod1', 'pod3', ...],
...}

@kopf.timer('kex', interval=5)
def tick(by_label: kopf.Index, **_):

print(list(by_label.get(('label2', 'value2b'), [])))
['pod1', 'pod3']
for podname in by_label.get(('label2', 'value2b'), []):

print(f"==> {podname}")
==> pod1
==> pod3

Note the multiple occurrences of some pods because they have two or more labels. But they never repeat within the
same label — labels can have only one value.

24.4 Recipes

24.4.1 Unindexed collections

When an indexing function returns a non-dict — i.e. strings, numbers, tuples, lists, sets, memos, arbitrary objects
except dict — then the key is assumed to be None and a flat index with only one key is constructed. The resources
are not indexed, but rather collected under the same key (which is still considered as indexing):

import kopf

@kopf.index('pods')
def pod_names(name: str, **_):

return name
{None: ['pod1', 'pod2', ...]}

Other types and complex objects returned from the indexing function are stored “as is” (i.e. with no special treatment):

import kopf

@kopf.index('pods')
def container_names(spec: kopf.Spec, **_):

return {container['name'] for container in spec.get('containers', [])}
{None: [{'main1', 'sidecar2'}, {'main2'}, ...]}

24.4. Recipes 79

Kopf

24.4.2 Enumerating resources

If the goal is not to store any payload but to only list the existing resources, then index the resources’ identities (usually,
their namespaces and names).

One way is to only collect their identities in a flat collection – in case you need mostly to iterate over all of them without
key lookups:

import kopf

@kopf.index('pods')
def pods_list(namespace, name, **_):

return namespace, name
{None: [('namespace1', 'pod1a'),
('namespace1', 'pod1b'),
('namespace2', 'pod2a'),
('namespace2', 'pod2b'),
...]}

@kopf.timer('kopfexamples', interval=5)
def tick_list(pods_list: kopf.Index, **_):

for ns, name in pods_list.get(None, []):
print(f"{ns}::{name}")

Another way is to index them by keys — when index lookups are going to happen more often than index iterations:

import kopf

@kopf.index('pods')
def pods_dict(namespace, name, **_):

return {(namespace, name): None}
{('namespace1', 'pod1a'): [None],
('namespace1', 'pod1b'): [None],
('namespace2', 'pod2a'): [None],
('namespace2', 'pod2b'): [None],
...}

@kopf.timer('kopfexamples', interval=5)
def tick_dict(pods_dict: kopf.Index, spec: kopf.Spec, namespace: str, **_):

monitored_namespace = spec.get('monitoredNamespace', namespace)
for ns, name in pods_dict:

if ns == monitored_namespace:
print(f"in {ns}: {name}")

80 Chapter 24. In-memory indexing

Kopf

24.4.3 Mirroring resources

To store the whole resource or its essential parts, return them explicitly:

import kopf

@kopf.index('deployments')
def whole_deployments(name: str, namespace: str, body: kopf.Body, **_):

return {(namespace, name): body}

@kopf.timer('kopfexamples', interval=5)
def tick(whole_deployments: kopf.Index, **_):

deployment, *_ = whole_deployments[('kube-system', 'coredns')]
actual = deployment.status.get('replicas')
desired = deployment.spec.get('replicas')
print(f"{deployment.meta.name}: {actual}/{desired}")

Note: Mind the memory consumption on large clusters and/or overly verbose objects. Especially mind the memory
consumption for “managed fields” (see kubernetes/kubernetes#90066).

24.4.4 Indices of indices

Iterating over all keys of the index can be slow (especially if there are many keys: e.g. with thousands of pods). For
that case, an index of an index can be built: with one primary indexing containing the real values to be used, while the
other secondary index only contains the keys of the primary index (full or partial).

By looking up a single key in the secondary index, the operator can directly get or indirectly reconstruct all the necessary
keys in the primary index instead of iterating over the primary index with filtering.

For example, we want to get all container names of all pods in a namespace. In that case, the primary index will index
containers by pods’ namespaces+names, while the secondary index will index pods’ names by namespaces only:

import kopf

@kopf.index('pods')
def primary(namespace, name, spec, **_):

container_names = {container['name'] for container in spec['containers']}
return {(namespace, name): container_names}
{('namespace1', 'pod1a'): [{'main'}],
('namespace1', 'pod1b'): [{'main', 'sidecar'}],
('namespace2', 'pod2a'): [{'main'}],
('namespace2', 'pod2b'): [{'the-only-one'}],
...}

@kopf.index('pods')
def secondary(namespace, name, **_):

return {namespace: name}
{'namespace1': ['pod1a', 'pod1b'],
'namespace2': ['pod2a', 'pod2b'],
...}

@kopf.timer('kopfexamples', interval=5)
(continues on next page)

24.4. Recipes 81

https://github.com/kubernetes/kubernetes/issues/90066

Kopf

(continued from previous page)

def tick(primary: kopf.Index, secondary: kopf.Index, spec: kopf.Spec, **_):
namespace_containers = set()
monitored_namespace = spec.get('monitoredNamespace', 'default')
for pod_name in secondary.get(monitored_namespace, []):

reconstructed_key = (monitored_namespace, pod_name)
pod_containers, *_ = primary[reconstructed_key]
namespace_containers |= pod_containers

print(f"containers in {monitored_namespace}: {namespace_containers}")
containers in namespace1: {'main', 'sidecar'}
containers in namespace2: {'main', 'the-only-one'}

However, such complicated structures and such performance requirements are rare. For simplicity and performance,
nested indices are not directly provided by the framework as a feature, only as this tip based on other official features.

24.5 Conditional indexing

Besides the usual filters (see Filtering), the resources can be skipped from indexing by returning None (Python’s default
for no-result functions).

If the indexing function returns None or does not return anything, its result is ignored and not indexed. The existing
values in the index are preserved as they are (this is also the case when unexpected errors happen in the indexing
function with the errors mode set to IGNORED):

import kopf

@kopf.index('pods')
def empty_index(**_):

pass
{}

However, if the indexing function returns a dict with None as values, such values are indexed as usually (they are not
ignored). None values can be used as placeholders when only the keys are sufficient; otherwise, indices and collections
with no values left in them are removed from the index:

import kopf

@kopf.index('pods')
def index_of_nones(**_):

return {'key': None}
{'key': [None, None, ...]}

24.6 Errors in indexing

The indexing functions are supposed to be fast and non-blocking, as they are capable of delaying the operator startup
and resource processing. For this reason, in case of errors in handlers, the handlers are never retried.

Arbitrary exceptions with errors=IGNORED (the default) make the framework ignore the error and keep the existing
indexed values (which are now stale). It means that the new values are expected to appear soon, but the old values
are good enough meanwhile (which is usually highly probable). This is the same as returning None, except that the
exception’s stack trace is logged too:

82 Chapter 24. In-memory indexing

Kopf

import kopf

@kopf.index('pods', errors=kopf.ErrorsMode.IGNORED) # the default
def fn1(**_):

raise Exception("Keep the stale values, if any.")

kopf.PermanentError and arbitrary exceptions with errors=PERMANENT remove any existing indexed values and
the resource’s keys from the index, and exclude the failed resource from indexing by this index in the future (so that
even the indexing function is not invoked for them):

import kopf

@kopf.index('pods', errors=kopf.ErrorsMode.PERMANENT)
def fn1(**_):

raise Exception("Excluded forever.")

@kopf.index('pods')
def fn2(**_):

raise kopf.PermamentError("Excluded forever.")

kopf.TemporaryError and arbitrary exceptions with errors=TEMPORARY remove any existing indexed values and
the resource’s keys from the index, and exclude the failed resource from indexing for the specified duration (via the
error’s delay option; set to 0 or None for no delay). It is expected that the resource could be reindexed in the future,
but right now, problems are preventing this from happening:

import kopf

@kopf.index('pods', errors=kopf.ErrorsMode.TEMPORARY)
def fn1(**_):

raise Exception("Excluded for 60s.")

@kopf.index('pods')
def fn2(**_):

raise kopf.TemporaryError("Excluded for 30s.", delay=30)

In the “temporary” mode, the decorator’s options for error handling are used: the backoff= is a default delay before
the resource can be re-indexed (the default is 60 seconds; for no delay, use 0 explicitly); the retries= and timeout=
are the limit of retries and the overall duration since the first failure until the resource will be marked as permanently
excluded from indexing (unless it succeeds at some point).

The handler’s kwargs retry, started , runtime report the retrying attempts since the first indexing failure. Success-
ful indexing resets all the counters/timeouts and the retrying state is not stored (to save memory).

The same as with regular handlers (Error handling), Kopf’s error classes (expected errors) only log a short message,
while arbitrary exceptions (unexpected errors) also dump their stack traces.

This matches the semantics of regular handlers but with in-memory specifics.

Warning: There is no good out-of-the-box default mode for error handling: any kind of errors in the indexing
functions means that the index becomes inconsistent with the actual state of the cluster and its resources: the entries
for matching resources are either “lost” (permanent or temporary errors), or contain possibly outdated/stale values
(ignored errors) — all of these cases are misinformation about the actual state of the cluster.

The default mode is chosen to reduce the index changes and reindexing in case of frequent errors — by not making
any changes to the index. Besides, the stale values can still be relevant and useful to some extent.

24.6. Errors in indexing 83

Kopf

For two other cases, the operator developers have to explicitly accept the risks by setting errors= if the operator
can afford to lose the keys.

24.7 Kwargs safety

Indices that are injected into kwargs, overwrite any kwargs of the framework, existing and those to be added later. This
guarantees that the new framework versions will not break an operator if new kwargs are added with the same name as
the existing indices.

In this case, the trade-off is that the handlers cannot use the new features until their indices are renamed to something
else. Since the new features are new, the old operator’s code does not use them, so it is backwards compatible.

To reduce the probability of name collisions, keep these conventions in mind when naming indices (they are fully
optional and for convenience only):

• System kwargs are usually one-word; name your indices with 2+ words.

• System kwargs are usually singular (not always); name the indices as plurals.

• System kwargs are usually nouns; using abbreviations or prefixes/suffixes (e.g. cnames, rpods) would reduce
the probability of collisions.

24.8 Performance

Indexing can be a CPU- & RAM-consuming operation. The data structures behind indices are chosen to be as efficient
as possible:

• The index’s lookups are O(1) — as in Python’s dict.

• The store’s updates/deletions are O(1) – a dict is used internally.

• The overall updates/deletions are O(k), where “k” is the number of keys per object (not of all keys!), which is
fixed in most cases, so it is O(1).

Neither the number of values stored in the index nor the overall amount of keys affect its performance (in theory).

Some performance can be lost on additional method calls of the user-facing mappings/collections made to hide the
internal dict structures. It is assumed to be negligible compared to the overall code overhead.

24.9 Guarantees

If an index is declared, there is no need to additionally pre-check for its existence — the index exists immediately even
if it contains no resources.

The indices are guaranteed to be fully pre-populated before any other resource-related handlers are invoked in the
operator. As such, even the on-creation handlers or raw event handlers are guaranteed to have the complete indexed
overview of the cluster, not just partially populated to the moment when they happened to be triggered.

There is no such guarantee for the operator handlers, such as startup/cleanup, authentication, health probing, and for
the indexing functions themselves: the indices are available in kwargs but can be empty or partially populated in the
operator’s startup and index pre-population stage. This can affect the cleanup/login/probe handlers if they are invoked
at that stage.

84 Chapter 24. In-memory indexing

Kopf

Though, the indices are safe to be passed to threads/tasks for later processing if such threads/tasks are started from the
before-mentioned startup handlers.

24.10 Limitations

All in-memory values are lost on operator restarts; there is no persistence. In particular, the indices are fully recalculated
on operator restarts during the initial listing of the resources (equivalent to @kopf.on.event).

On large clusters with thousands of resources, the initial index population can take time, so the operator’s processing
will be delayed regardless of whether the handlers do use the indices or they do not (the framework cannot know this
for sure).

See also:

In-memory containers — other in-memory structures with similar limitations.

See also:

Indexers and indices are conceptually similar to client-go’s indexers – with all the underlying components implemented
inside of the framework (“batteries included”).

24.10. Limitations 85

https://github.com/kubernetes/sample-controller/blob/master/docs/controller-client-go.md

Kopf

86 Chapter 24. In-memory indexing

CHAPTER

TWENTYFIVE

ADMISSION CONTROL

Admission hooks are callbacks from Kubernetes to the operator before the resources are created or modified. There
are two types of hooks:

• Validating admission webhooks.

• Mutating admission webhooks.

For more information on the admission webhooks, see the Kubernetes documentation: Dynamic Admission Control.

25.1 Dependencies

To minimize Kopf’s footprint in production systems, it does not include heavy-weight dependencies needed only for
development, such as SSL cryptography and certificate generation libraries. For example, Kopf’s footprint with critical
dependencies is 8.8 MB, while cryptography would add 8.7 MB; certbuilder adds “only” 2.9 MB.

To use all features of development-mode admission webhook servers and tunnels, you have to install Kopf with an
extra:

pip install kopf[dev]

If this extra is not installed, Kopf will not generate self-signed certificates and will run either with HTTP only or with
externally provided certificates.

Also, without this extra, Kopf will not be able to establish Ngrok tunnels. Though, it will be able to use K3d & Minikube
servers with magic hostnames.

Any attempt to run it in a mode with self-signed certificates or tunnels will raise a startup-time error with an explanation
and suggested actions.

25.2 Validation handlers

import kopf

@kopf.on.validate('kopfexamples')
def say_hello(warnings: list[str], **_):

warnings.append("Verified with the operator's hook.")

@kopf.on.validate('kopfexamples')
def check_numbers(spec, **_):

if not isinstance(spec.get('numbers', []), list):
(continues on next page)

87

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

Kopf

(continued from previous page)

raise kopf.AdmissionError("Numbers must be a list if present.")

@kopf.on.validate('kopfexamples')
def convertible_numbers(spec, warnings, **_):

if isinstance(spec.get('numbers', []), list):
for val in spec.get('numbers', []):

if not isinstance(val, float):
try:

float(val)
except ValueError:

raise kopf.AdmissionError(f"Cannot convert {val!r} to a number.")
else:

warnings.append(f"{val!r} is not a number but can be converted.")

@kopf.on.validate('kopfexamples')
def numbers_range(spec, **_):

if isinstance(spec.get('numbers', []), list):
if not all(0 <= float(val) <= 100 for val in spec.get('numbers', [])):

raise kopf.AdmissionError("Numbers must be below 0..100.", code=499)

Each handler is mapped to its dedicated admission webhook and an endpoint so that all handlers are executed in parallel
independently of each other. They must not expect that other checks are already performed by other handlers; if such
logic is needed, make it as one handler with a sequential execution.

25.3 Mutation handlers

To mutate the object, modify the patch . Changes to body, spec, etc, will not be remembered (and are not possible):

import kopf

@kopf.on.mutate('kopfexamples')
def ensure_default_numbers(spec, patch, **_):

if 'numbers' not in spec:
patch.spec['numbers'] = [1, 2, 3]

@kopf.on.mutate('kopfexamples')
def convert_numbers_if_possible(spec, patch, **_):

if 'numbers' in spec and isinstance(spec.get('numbers'), list):
patch.spec['numbers'] = [_maybe_number(v) for v in spec['numbers']]

def _maybe_number(v):
try:

return float(v)
except ValueError:

return v

The semantics is the same or as close as possible to the Kubernetes API’s one. None values will remove the relevant
keys.

Under the hood, the patch object will remember each change and will return a JSONPatch structure to Kubernetes.

88 Chapter 25. Admission control

Kopf

25.4 Handler options

Handlers have a limited capability to inform Kubernetes about its behaviour. The following options are supported:

persistent (bool) webhooks will not be removed from the managed configurations on exit; non-persisted webhooks
will be removed if possible. Such webhooks will prevent all admissions even when the operator is down. This option
has no effect if there is no managed configuration. The webhook cleanup only happens on graceful exits; on forced
exits, even non-persisted webhooks might be persisted and block the admissions.

operation (str) will configure this handler/webhook to be called only for a specific operation. For multiple opera-
tions, add several decorators. Possible values are "CREATE", "UPDATE", "DELETE", "CONNECT". The default is None,
i.e. all operations (equivalent to "*").

subresource (str) will only react when to the specified subresource. Usually it is "status" or "scale", but can
be anything else. The value None means that only the main resource body will be checked. The value "*" means that
both the main body and any subresource are checked. The default is None, i.e. only the main body to be checked.

side_effects (bool) tells Kubernetes that the handler can have side effects in non-dry-run mode. In dry-run mode,
it must have no side effects. The dry-run mode is passed to the handler as a dryrun kwarg. The default is False, i.e.
the handler has no side effects.

ignore_failures (bool) marks the webhook as tolerant to errors. This includes errors of the handler itself (disproved
admissions), so as HTTP/TCP communication errors when apiservers talk to the webhook server. By default, an
inaccessible or rejecting webhook blocks the admission.

The developers can use regular Filtering. In particular, the labels will be passed to the webhook configuration as .
webhooks.*.objectSelector for optimization purposes: so that admissions are not even sent to the webhook server
if it is known that they will be filtered out and therefore allowed.

Server-side filtering supports everything except callbacks: i.e., "strings", kopf.PRESENT and kopf.ABSENT mark-
ers. The callbacks will be evaluated after the admission review request is received.

Warning: Be careful with the builtin resources and admission hooks. If a handler is broken or misconfigured, it
can prevent creating those resources, e.g. pods, in the whole cluster. This will render the cluster unusable until the
configuration is manually removed.

Start the development in local clusters, validating/mutating the custom resources first, and enable ignore_errors
initially. Enable the strict mode of the handlers only when stabilised.

25.5 In-memory containers

Kopf provides In-memory containers for each resource. However, webhooks can happen before a resource is created.
This affects how the memos work.

For update and deletion requests, the actual memos of the resources are used.

For the admission requests on resource creation, a memo is created and discarded immediately. It means that the
creation’s memos are useless at the moment.

This can change in the future: the memos of resource creation attempts will be preserved for a limited but short time
(configurable), so that the values could be shared between the admission and the handling, but so that there are no
memory leaks if the resource never succeeds in admission.

25.4. Handler options 89

Kopf

25.6 Admission warnings

Starting with Kubernetes 1.19 (check with kubectl version), admission warnings can be returned from admission
handlers.

To populate warnings, accept a mutable warnings (list[str]) and add strings to it:

import kopf

@kopf.on.validate('kopfexamples')
def ensure_default_numbers(spec, warnings: list[str], **_):

if spec.get('field') == 'value':
warnings.append("The default value is used. It is okay but worth changing.")

The admission warnings look like this (requires kubectl 1.19+):

$ kubectl create -f examples/obj.yaml
Warning: The default value is used. It is okay but worth changing.
kopfexample.kopf.dev/kopf-example-1 created

Note: Despite Kopf’s intention to utilise Python’s native features that semantically map to Kubernetes’s or operators’
features, Python StdLib’s warnings is not used for admission warnings (the initial idea was to catch UserWarning
and warnings.warn("...") calls and return them as admission warnings).

The StdLib’s module is documented as thread-unsafe (therefore, task-unsafe) and requires hacking the global state
which might affect other threads and/or tasks – there is no clear way to do this consistently.

This may be revised in the future and provided as an additional feature.

25.7 Admission errors

Unlike with regular handlers and their error handling logic (Error handling), the webhooks cannot do retries or backoffs.
So, the backoff=, errors=, retries=, timeout= options are not accepted on the admission handlers.

A special exception kopf.AdmissionError is provided to customize the status code and the message of the admission
review response.

All other exceptions, including kopf.PermanentError and kopf.TemporaryError, equally fail the admission (be
that validating or mutating admission). However, they return the general HTTP code 500 (non-customisable).

One and only one error is returned to the user who make an API request. In cases when Kubernetes makes several
parallel requests to several webhooks (typically with managed webhook configurations, the fastest error is used). Within
Kopf (usually with custom webhook servers/tunnels or self-made non-managed webhook configurations), errors are
prioritised: first, admission errors, then permanent errors, then temporary errors, then arbitrary errors are used to
select the only error to report in the admission review response.

@kopf.on.validate('kopfexamples')
def validate1(spec, **_):

if spec.get('field') == 'value':
raise kopf.AdmissionError("Meh! I don't like it. Change the field.", code=400)

The admission errors look like this (manually indented for readability):

90 Chapter 25. Admission control

https://docs.python.org/3/library/warnings.html#module-warnings
https://docs.python.org/3/library/exceptions.html#UserWarning

Kopf

$ kubectl create -f examples/obj.yaml
Error from server: error when creating "examples/obj.yaml":

admission webhook "validate1.auto.kopf.dev" denied the request:
Meh! I don't like it. Change the field.

Note that Kubernetes executes multiple webhooks in parallel. The first one to return the result is the one and the only
shown; other webhooks are not shown even if they fail with useful messages. With multiple failing admissions, the
message will be varying on each attempt.

25.8 Webhook management

Admission (both for validation and for mutation) only works when the cluster has special resources created: either
kind: ValidatingWebhookConfiguration or kind: MutatingWebhookConfiguration or both. Kopf can
automatically manage the webhook configuration resources in the cluster if it is given RBAC permissions to do so.

To manage the validating/mutating webhook configurations, Kopf requires the following RBAC permissions in its
service account (see Deployment):

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
rules:
- apiGroups: [admissionregistration.k8s.io/v1, admissionregistration.k8s.io/v1beta1]
resources: [validatingwebhookconfigurations, mutatingwebhookconfigurations]
verbs: [create, patch]

By default, configuration management is disabled (for safety and stability). To enable, set the name of the managed
configuration objects:

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.admission.managed = 'auto.kopf.dev'

Multiple records for webhooks will be added or removed for multiple resources to those configuration objects as needed.
Existing records will be overwritten. If the configuration resource is absent, it will be created (but at most one for
validating and one for mutating configurations).

Kopf manages the webhook configurations according to how Kopf itself believes it is sufficient to achieve the goal.
Many available Kubernetes features are not covered by this management. To use these features and control the config-
uration with precision, operator developers can disable the automated management and take care of the configuration
manually.

25.9 Servers and tunnels

Kubernetes admission webhooks are designed to be passive rather than active (from the operator’s point of view;
vice versa from Kubernetes’s point of view). It means, the webhooks must passively wait for requests via an HTTPS
endpoint. There is currently no official way how an operator can actively pull or poll the admission requests and send
the responses back (as it is done for all other resource changes streamed via the Kubernetes API).

It is typically non-trivial to forward the requests from a remote or isolated cluster to a local host machine where the
operator is running for development.

However, one of Kopf’s main promises is to work the same way both in-cluster and on the developers’ machines. It
cannot be made “the same way” for webhooks, but Kopf attempts to make these modes similar to each other code-wise.

25.8. Webhook management 91

Kopf

To fulfil its promise, Kopf delegates this task to webhook servers and tunnels, which are capable of receiving the
webhook requests, marshalling them to the handler callbacks, and then returning the results to Kubernetes.

Due to numerous ways of how the development and production environments can be configured, Kopf does not provide
a default configuration for a webhook server, so it must be set by the developer:

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

if os.environ.get('ENVIRONMENT') is None:
Only as an example:
settings.admission.server = kopf.WebhookK3dServer(port=54321)
settings.admission.managed = 'auto.kopf.dev'

else:
Assuming that the configuration is done manually:
settings.admission.server = kopf.WebhookServer(addr='0.0.0.0', port=8080)
settings.admission.managed = 'auto.kopf.dev'

If there are admission handlers present and no webhook server/tunnel configured, the operator will fail at startup with
an explanatory message.

Kopf provides several webhook servers and tunnels out of the box, each with its configuration parameters (see their
descriptions):

Webhook servers listen on an HTTPS port locally and handle requests.

• kopf.WebhookServer is helpful for local development and curl and a Kubernetes cluster that runs directly on
the host machine and can access it. It is also used internally by most tunnels for a local target endpoint.

• kopf.WebhookK3dServer is for local K3d/K3s clusters (even in a VM), accessing the server via a magical
hostname host.k3d.internal.

• kopf.WebhookMinikubeServer for local Minikube clusters (even in VMs), accessing the server via a magical
hostname host.minikube.internal.

Webhook tunnels forward the webhook requests through external endpoints usually to a locally running webhook server.

• kopf.WebhookNgrokTunnel established a tunnel through ngrok.

For ease of use, the cluster type can be recognised automatically in some cases:

• kopf.WebhookAutoServer runs locally, detects Minikube & K3s, and uses them via their special hostnames.
If it cannot detect the cluster type, it runs a simple local webhook server. The auto-server never tunnels.

• kopf.WebhookAutoTunnel attempts to use an auto-server if possible. If not, it uses one of the available tunnels
(currently, only ngrok). This is the most universal way to make any environment work.

Note: External tunnelling services usually limit the number of requests. For example, ngrok has a limit of 40 requests
per minute on a free plan.

The services also usually provide paid subscriptions to overcome that limit. It might be a wise idea to support the
service you rely on with some money. If that is not an option, you can implement free tunnelling your way.

Note: A reminder: using development-mode tunnels and self-signed certificates requires extra dependencies: pip
install kopf[dev].

92 Chapter 25. Admission control

https://ngrok.com/

Kopf

25.10 Authenticate apiservers

There are many ways how webhook clients (Kubernetes’s apiservers) can authenticate against webhook servers (the
operator’s webhooks), and even more ways to validate the supplied credentials.

More on that, apiservers cannot be configured to authenticate against webhooks dynamically at runtime, as this requires
control-plane configs, which are out of reach of Kopf.

For simplicity, Kopf does not authenticate webhook clients.

However, Kopf’s built-in webhook servers & tunnels extract the very basic request information and pass it to the ad-
mission handlers for additional verification and possibly for authentification:

• headers (Mapping[str, str]) contains all HTTPS headers, including Authorization: Basic ...,
Authorization: Bearer

• sslpeer (Mapping[str, Any]) contains the SSL peer information as returned by ssl.SSLSocket.
getpeercert() or None if no proper SSL certificate is provided by a client (i.e. by apiservers talking to
webhooks).

An example of headers:

{'Host': 'localhost:54321',
'Authorization': 'Basic dXNzc2VyOnBhc3Nzdw==', # base64("ussser:passsw")
'Content-Length': '844',
'Content-Type': 'application/x-www-form-urlencoded'}

An example of a self-signed peer certificate presented to sslpeer:

{'subject': ((('commonName', 'Example Common Name'),),
(('emailAddress', 'example@kopf.dev'),)),

'issuer': ((('commonName', 'Example Common Name'),),
(('emailAddress', 'example@kopf.dev'),)),

'version': 1,
'serialNumber': 'F01984716829537E',
'notBefore': 'Mar 7 17:12:20 2021 GMT',
'notAfter': 'Mar 7 17:12:20 2022 GMT'}

To reproduce these examples without configuring the Kubernetes apiservers but only Kopf & CLI tools, do the follow-
ing:

Step 1: Generate a self-signed ceritificate to be used as a client certificate:

openssl req -x509 -newkey rsa:2048 -keyout client-key.pem -out client-cert.pem -days 365␣
→˓-nodes
Country Name (2 letter code) []:
State or Province Name (full name) []:
Locality Name (eg, city) []:
Organization Name (eg, company) []:
Organizational Unit Name (eg, section) []:
Common Name (eg, fully qualified host name) []:Example Common Name
Email Address []:example@kopf.dev

Step 2: Start an operator with the certificate as a CA (for simplicity; in normal setups, there is a separate CA, which
signs the client certificates; explaining this topic is beyond the scope of this framework’s documentation):

25.10. Authenticate apiservers 93

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#authenticate-apiservers
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#authenticate-apiservers

Kopf

import kopf

@kopf.on.startup()
def config(settings: kopf.OperatorSettings, **_):

settings.admission.managed = 'auto.kopf.dev'
settings.admission.server = kopf.WebhookServer(cafile='client-cert.pem')

@kopf.on.validate('kex')
def show_auth(headers, sslpeer, **_):

print(f'{headers=}')
print(f'{sslpeer=}')

Step 3: Save the admission review payload into a local file:

cat >review.json << EOF
{
"kind": "AdmissionReview",
"apiVersion": "admission.k8s.io/v1",
"request": {
"uid": "1ca13837-ad60-4c9e-abb8-86f29d6c0e84",
"kind": {"group": "kopf.dev", "version": "v1", "kind": "KopfExample"},
"resource": {"group": "kopf.dev", "version": "v1", "resource": "kopfexamples"},
"requestKind": {"group": "kopf.dev", "version": "v1", "kind": "KopfExample"},
"requestResource": {"group": "kopf.dev", "version": "v1", "resource": "kopfexamples"}

→˓,
"name": "kopf-example-1",
"namespace": "default",
"operation": "CREATE",
"userInfo": {"username": "admin", "uid": "admin", "groups": ["system:masters",

→˓"system:authenticated"]},
"object": {
"apiVersion": "kopf.dev/v1",
"kind": "KopfExample",
"metadata": {"name": "kopf-example-1", "namespace": "default"}

},
"oldObject": null,
"dryRun": true

}
}
EOF

Step 4: Send the admission review payload to the operator’s webhook server using the generated client certificate,
observe the client identity printed to stdout by the webhook server and returned in the warnings:

curl --insecure --cert client-cert.pem --key client-key.pem https://
→˓ussser:passsw@localhost:54321 -d @review.json
{"apiVersion": "admission.k8s.io/v1", "kind": "AdmissionReview",
"response": {"uid": "1ca13837-ad60-4c9e-abb8-86f29d6c0e84",
"allowed": true,
"warnings": ["SSL peer is Example Common Name."]}}

Using this data, operator developers can implement servers/tunnels with custom authentication methods when and if
needed.

94 Chapter 25. Admission control

Kopf

25.11 Debugging with SSL

Kubernetes requires that the webhook URLs are always HTTPS, never HTTP. For this reason, Kopf runs the webhook
servers/tunnels with HTTPS by default.

If a webhook server is configured without a server certificate, a self-signed certificate is generated at startup, and only
HTTPS is served.

@kopf.on.startup()
def config(settings: kopf.OperatorSettings, **_):

settings.admission.server = kopf.WebhookServer()

That endpoint can be accessed directly with curl:

curl --insecure https://localhost:54321 -d @review.json

It is possible to store the generated certificate itself and use as a CA:

@kopf.on.startup()
def config(settings: kopf.OperatorSettings, **_):

settings.admission.server = kopf.WebhookServer(cadump='selfsigned.pem')

curl --cacert selfsigned.pem https://localhost:54321 -d @review.json

For production, a properly generated certificate should be used. The CA, if not specified, is assumed to be in the default
trust chain. This applies to all servers: kopf.WebhookServer, kopf.WebhookK3dServer, etc.

@kopf.on.startup()
def config(settings: kopf.OperatorSettings, **_):

settings.admission.server = kopf.WebhookServer(
cafile='ca.pem', # or cadata, or capath.
certfile='cert.pem',
pkeyfile='pkey.pem',
password='...') # for the private key, if used.

Note: cadump (output) can be used together with cafile/cadata (input), though it will be the exact copy of the CA
and does not add any benefit.

As a last resort, if SSL is still a problem, it can be disabled and an insecure HTTP server can be used. This does not
work with Kubernetes but can be used for direct access during development; it is also used by some tunnels that do not
support HTTPS tunnelling (or require paid subscriptions):

@kopf.on.startup()
def config(settings: kopf.OperatorSettings, **_):

settings.admission.server = kopf.WebhookServer(insecure=True)

25.11. Debugging with SSL 95

Kopf

25.12 Custom servers/tunnels

Operator developers can provide their custom servers and tunnels by implementing an async iterator over client configs
(kopf.WebhookClientConfig). There are two ways to implement servers/tunnels.

One is a simple but non-configurable coroutine:

async def mytunnel(fn: kopf.WebhookFn) -> AsyncIterator[kopf.WebhookClientConfig]:
...
yield client_config
await asyncio.Event().wait()

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.admission.server = mytunnel # no arguments!

Another one is a slightly more complex but configurable class:

class MyTunnel:
async def __call__(self, fn: kopf.WebhookFn) -> AsyncIterator[kopf.

→˓WebhookClientConfig]:
...
yield client_config
await asyncio.Event().wait()

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.admission.server = MyTunnel() # arguments are possible.

The iterator MUST accept a positional argument of type kopf.WebhookFn and call it with the JSON-parsed payload
when a review request is received; then, it MUST await the result and JSON-serialize it as a review response:

response = await fn(request)

Optionally (though highly recommended), several keyword arguments can be passed to extend the request data (if not
passed, they all use None by default):

• webhook (str) – to execute only one specific handler/webhook. The id usually comes from the URL, which the
framework injects automatically. It is highly recommended to provide at least this hint: otherwise, all admission
handlers are executed, with mutating and validating handlers mixed, which can lead to mutating patches returned
for validation requests, which in turn will fail the admission on the Kubernetes side.

• headers (Mapping[str, str]) – the HTTPS headers of the request are passed to handlers as headers and
can be used for authentication.

• sslpeer (Mapping[str, Any]) – the SSL peer information taken from the client certificate (if provided and
if verified); it is passed to handlers as sslpeer and can be used for authentication.

response = await fn(request, webhook=handler_id, headers=headers, sslpeer=sslpeer)

There is no guarantee on what is happening in the callback and how it works. The exact implementation can be changed
in the future without warning: e.g., the framework can either invoke the admission handlers directly in the callback or
queue the request for a background execution and return an awaitable future.

The iterator must yield one or more client configs. Configs are dictionaries that go to the managed webhook configu-
rations as .webhooks.*.clientConfig.

96 Chapter 25. Admission control

Kopf

Regardless of how the client config is created, the framework extends the URLs in the url and service.path fields
with the handler/webhook ids, so that a URL https://myhost/path becomes https://myhost/path/handler1,
https://myhost/path/handler2, so on.

Remember: Kubernetes prohibits using query parameters and fragments in the URLs.

In most cases, only one yielded config is enough if the server is going to serve the requests at the same endpoint. In
rare cases when the endpoint changes over time (e.g. for dynamic tunnels), the server/tunnel should yield a new config
every time the endpoint changes, and the webhook manager will reconfigure all managed webhooks accordingly.

The server/tunnel must hold control by running the server or by sleeping. To sleep forever, use await asyncio.
Event().wait(). If the server/tunnel exits unexpectedly, this causes the whole operator to exit.

If the goal is to implement a tunnel only, but not a custom webhook server, it is highly advised to inherit from or directly
use kopf.WebhookServer to run a locally listening endpoint. This server implements all URL parsing and request
handling logic well-aligned with the rest of the framework:

Inheritance:
class MyTunnel1(kopf.WebhookServer):

async def __call__(self, fn: kopf.WebhookFn) -> AsyncIterator[kopf.
→˓WebhookClientConfig]:

...
for client_config in super().__call__(fn):

... # renew a tunnel, adjust the config
yield client_config

Composition:
class MyTunnel2:

async def __call__(self, fn: kopf.WebhookFn) -> AsyncIterator[kopf.
→˓WebhookClientConfig]:

server = kopf.WebhookServer(...)
for client_config in server(fn):

... # renew a tunnel, adjust the config
yield client_config

25.13 System resource cleanup

It is advised that custom servers/tunnels cleanup the system resources they allocate at runtime. The easiest way is the
try-finally block – the cleanup will happen on the garbage collection of the generator object (beware: it can be
postponed in some environments, e.g. in PyPy).

For explicit cleanup of system resources, the servers/tunnels can implement the asynchronous context manager protocol:

class MyServer:
def __init__(self):

super().__init__()
self._resource = None

async def __aenter__(self) -> "MyServer":
self._resource = PotentiallyLeakableResource()
return self

async def __aexit__(self, exc_type, exc_val, exc_tb) -> bool:
self._resource.cleanup()

(continues on next page)

25.13. System resource cleanup 97

Kopf

(continued from previous page)

self._resource = None

async def __call__(self, fn: kopf.WebhookFn) -> AsyncIterator[kopf.
→˓WebhookClientConfig]:

for client_config in super().__call__(fn):
yield client_config

The context manager should usually return self, but it can return a substitute webhook server/tunnel object, which
will actually be used. That way, the context manager turns into a factory of webhook server(s).

Keep in mind that the webhook server/tunnel is used only once per the operator’s lifetime; once it exits, the whole
operator stops. It makes no practical sense in making the webhook servers/tunnels reentrant.

Note: An implementation note: webhook servers and tunnels provided by Kopf use a little hack to keep them
usable with the simple protocol (a callable that yields the client configs) while also supporting the optional context
manager protocol for system resource safety: when the context manager is exited, it force-closes the generators that
yield the client configs as if they were garbage-collected. Users’ final webhook servers/tunnels do not need this level
of complication.

See also:

For reference implementations of servers and tunnels, see the provided webhooks.

98 Chapter 25. Admission control

https://github.com/nolar/kopf/blob/master/kopf/toolkits/webhooks.py

CHAPTER

TWENTYSIX

STARTUP

The startup handlers are slightly different from the module-level code: the actual tasks (e.g. API calls for resource
watching) are not started until all the startup handlers succeed.

The handlers run inside of the operator’s event loop, so they can initialise the loop-bound variables – which is impossible
in the module-level code:

import asyncio
import kopf

LOCK: asyncio.Lock

@kopf.on.startup()
async def startup_fn(logger, **kwargs):

global LOCK
LOCK = asyncio.Lock() # uses the running asyncio loop by default

If any of the startup handlers fail, the operator fails to start without making any external API calls.

Note: If the operator is running in a Kubernetes cluster, there can be timeouts set for liveness/readiness checks of a
pod.

If the startup takes too long in total (e.g. due to retries), the pod can be killed by Kubernetes as not responding to the
probes.

Either design the startup activities to be as fast as possible, or configure the liveness/readiness probes accordingly.

Kopf itself does not set any implicit timeouts for the startup activity, and it can continue forever (unless explicitly
limited).

99

Kopf

100 Chapter 26. Startup

CHAPTER

TWENTYSEVEN

SHUTDOWN

The cleanup handlers are executed when the operator exits either by a signal (e.g. SIGTERM) or by catching an
exception, or by raising the stop-flag, or by cancelling the operator’s task (for embedded operators):

import kopf

@kopf.on.cleanup()
async def cleanup_fn(logger, **kwargs):

pass

The cleanup handlers are not guaranteed to be fully executed if they take too long – due to a limited graceful period or
non-graceful termination.

Similarly, the clean up handlers are not executed if the operator is force-killed with no possibility to react (e.g. by
SIGKILL).

Note: If the operator is running in a Kubernetes cluster, there can be timeouts set for graceful termination of a pod
(terminationGracePeriodSeconds, the default is 30 seconds).

If the cleanup takes longer than that in total (e.g. due to retries), the activity will not be finished in full, as the pod will
be SIGKILL’ed by Kubernetes.

Either design the cleanup activities to be as fast as possible, or configure terminationGracePeriodSeconds accord-
ingly.

Kopf itself does not set any implicit timeouts for the cleanup activity, and it can continue forever (unless explicitly
limited).

101

Kopf

102 Chapter 27. Shutdown

CHAPTER

TWENTYEIGHT

HEALTH-CHECKS

Kopf provides a minimalistic HTTP server to report its health status.

28.1 Liveness endpoints

By default, no endpoint is configured, and no health is reported. To specify an endpoint to listen for probes, use
--liveness:

kopf run --liveness=http://0.0.0.0:8080/healthz --verbose handlers.py

Currently, only HTTP is supported. Other protocols (TCP, HTTPS) can be added in the future.

28.2 Kubernetes probing

This port and path can be used in a liveness probe of the operator’s deployment. If the operator does not respond for
any reason, Kubernetes will restart it.

apiVersion: apps/v1
kind: Deployment
spec:
template:
spec:
containers:
- name: the-only-one
image: ...
livenessProbe:
httpGet:
path: /healthz
port: 8080

See also:

Kubernetes manual on liveness and readiness probes.

See also:

Please be aware of the readiness vs. liveness probing. In the case of operators, readiness probing makes no practical
sense, as operators do not serve traffic under the load balancing or with services. Liveness probing can help in disastrous
cases (e.g. the operator is stuck), but will not help in case of partial failures (one of the API calls stuck). You can read
more here: https://srcco.de/posts/kubernetes-liveness-probes-are-dangerous.html

103

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://srcco.de/posts/kubernetes-liveness-probes-are-dangerous.html

Kopf

Warning: Make sure that one and only one pod of an operator is running at a time, especially during the restarts
— see Deployment.

28.3 Probe handlers

The content of the response is empty by default. It can be populated with probing handlers:

import datetime
import kopf
import random

@kopf.on.probe(id='now')
def get_current_timestamp(**kwargs):

return datetime.datetime.now(datetime.timezone.utc).isoformat()

@kopf.on.probe(id='random')
def get_random_value(**kwargs):

return random.randint(0, 1_000_000)

The probe handlers will be executed on the requests to the liveness URL, and cached for a reasonable time to prevent
overloading by mass-requesting the status.

The handler results will be reported as the content of the liveness response:

$ curl http://localhost:8080/healthz
{"now": "2019-11-07T18:03:52.513803+00:00", "random": 765846}

Note: The liveness status report is simplistic and minimalistic at the moment. It only reports success if the health-
reporting task runs at all. It can happen so that some of the operator’s tasks, threads, or streams do break, freeze, or
become unresponsive, while the health-reporting task continues to run. The probability of such a case is low, but not
zero.

There are no checks that the operator operates anything (unless they are implemented explicitly with the probe-
handlers), as there are no reliable criteria for that – total absence of handled resources or events can be an expected
state of the cluster.

104 Chapter 28. Health-checks

CHAPTER

TWENTYNINE

AUTHENTICATION

To access a Kubernetes cluster, an endpoint and some credentials are needed. They are usually taken either from the
environment (environment variables), or from the ~/.kube/config file, or from external authentication services.

Kopf provides rudimentary authentication out of the box: it can authenticate with the Kubernetes API either via the
service account or raw kubeconfig data (with no additional interpretation or parsing of those).

But this can be not enough in some setups and environments. Kopf does not try to maintain all the authentication
methods possible. Instead, it allows the operator developers to implement their custom authentication methods and
“piggybacks” the existing Kubernetes clients.

The latter ones can implement some advanced authentication techniques, such as the temporary token retrieval via the
authentication services, token rotation, etc.

29.1 Custom authentication

In most setups, the normal authentication from one of the API client libraries is enough — it works out of the box if
those clients are installed (see Piggybacking below). Custom authentication is only needed if the normal authentication
methods do not work for some reason, such as if you have a specific and unusual cluster setup (e.g. your own auth
tokens).

To implement a custom authentication method, one or a few login-handlers can be added. The login handlers should
either return nothing (None) or an instance of kopf.ConnectionInfo:

import datetime
import kopf

@kopf.on.login()
def login_fn(**kwargs):

return kopf.ConnectionInfo(
server='https://localhost',
ca_path='/etc/ssl/ca.crt',
ca_data=b'...',
insecure=True,
username='...',
password='...',
scheme='Bearer',
token='...',
certificate_path='~/.minikube/client.crt',
private_key_path='~/.minikube/client.key',
certificate_data=b'...',
private_key_data=b'...',

(continues on next page)

105

Kopf

(continued from previous page)

expiration=datetime.datetime(2099, 12, 31, 23, 59, 59),
)

Both TZ-naive & TZ-aware expiration times are supported. The TZ-naive timestamps are always treated as UTC.

As with any other handlers, the login handler can be async if the network communication is needed and async mode is
supported:

import kopf

@kopf.on.login()
async def login_fn(**kwargs):

pass

A kopf.ConnectionInfo is a container to bring the parameters necessary for making the API calls, but not the ways
of retrieving them. Specifically:

• TCP server host & port.

• SSL verification/ignorance flag.

• SSL certificate authority.

• SSL client certificate and its private key.

• HTTP Authorization: Basic username:password.

• HTTP Authorization: Bearer token (or other schemes: Bearer, Digest, etc).

• URL’s default namespace for the cases when this is implied.

No matter how the endpoints or credentials are retrieved, they are directly mapped to TCP/SSL/HTTPS protocols in
the API clients. It is the responsibility of the authentication handlers to ensure that the values are consistent and valid
(e.g. via internal verification calls). It is in theory possible to mix all authentication methods at once or to have none
of them at all. If the credentials are inconsistent or invalid, there will be permanent re-authentication happening.

Multiple handlers can be declared to retrieve different credentials or the same credentials via different libraries. All of
the retrieved credentials will be used in random order with no specific priority.

29.2 Piggybacking

In case no handlers are explicitly declared, Kopf attempts to authenticate with the existing Kubernetes libraries if they
are installed. At the moment: pykube-ng and kubernetes. In the future, more libraries can be added for authentication
piggybacking.

Note: Since kopf>=1.29, pykube-ng is not pre-installed implicitly. If needed, install it explicitly as a dependency
of the operator, or via kopf[full-auth] (see Installation).

Piggybacking means that the config parsing and authentication methods of these libraries are used, and only the infor-
mation needed for API calls is extracted.

If a few of the piggybacked libraries are installed, all of them will be attempted (as if multiple handlers are installed),
and all the credentials will be utilised in random order.

If that is not the desired case, and only one of the libraries is needed, declare a custom login handler explicitly, and use
only the preferred library by calling one of the piggybacking functions:

106 Chapter 29. Authentication

https://github.com/hjacobs/pykube
https://github.com/kubernetes-client/python

Kopf

import kopf

@kopf.on.login()
def login_fn(**kwargs):

return kopf.login_via_pykube(**kwargs)

Or:

import kopf

@kopf.on.login()
def login_fn(**kwargs):

return kopf.login_via_client(**kwargs)

The same trick is also useful to limit the authentication attempts by time or by number of retries (by default, it tries
forever until succeeded, returned nothing, or explicitly failed):

import kopf

@kopf.on.login(retries=3)
def login_fn(**kwargs):

return kopf.login_via_pykube(**kwargs)

Similarly, if the libraries are installed and needed, but their credentials are not desired, the rudimentary login functions
can be used directly:

import kopf

@kopf.on.login()
def login_fn(**kwargs):

return kopf.login_with_service_account(**kwargs) or kopf.login_with_
→˓kubeconfig(**kwargs)

See also:

kopf.login_via_pykube, kopf.login_via_client, kopf.login_with_kubeconfig, kopf.
login_with_service_account.

29.3 Credentials lifecycle

Internally, all the credentials are gathered from all the active handlers (either the declared ones or all the fallback
piggybacking ones) in no particular order, and are fed into a vault.

The Kubernetes API calls then use random credentials from that vault. The credentials that have reached their expiration
are ignored and removed. If the API call fails with an HTTP 401 error, these credentials are marked invalid, excluded
from further use, and the next random credentials are tried.

When the vault is fully depleted, it freezes all the API calls and triggers the login handlers for re-authentication. Only
the new credentials are used. The credentials, which previously were known to be invalid, are ignored to prevent a
permanent never-ending re-authentication loop.

There is no validation of credentials by making fake API calls. Instead, the real API calls validate the credentials
by using them and reporting them back to the vault as invalid (or keeping them as valid), potentially causing new
re-authentication activities.

29.3. Credentials lifecycle 107

Kopf

In case the vault is depleted and no new credentials are provided by the login handlers, the API calls fail, and so does
the operator.

This internal logic is hidden from the operator developers, but it is worth knowing how it works internally. See Vault.

If the expiration is intended to be often (e.g. every few minutes), you might want to disable the logging of re-
authenication (whether this is a good idea or not, you decide using the information about your system):

import logging

logging.getLogger('kopf.activities.authentication').disabled = True
logging.getLogger('kopf._core.engines.activities').disabled = True

108 Chapter 29. Authentication

CHAPTER

THIRTY

CONFIGURATION

It is possible to fine-tune some aspects of Kopf-based operators, like timeouts, synchronous handler pool sizes, auto-
matic Kubernetes Event creation from object-related log messages, etc.

30.1 Startup configuration

Every operator has its settings (even if there is more than one operator in the same processes, e.g. due to Embedding).
The settings affect how the framework behaves in details.

The settings can be modified in the startup handlers (see Startup):

import kopf
import logging

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.posting.level = logging.WARNING
settings.watching.connect_timeout = 1 * 60
settings.watching.server_timeout = 10 * 60

All the settings have reasonable defaults, so the configuration should be used only for fine-tuning when and if necessary.

For more settings, see kopf.OperatorSettings and settings.

30.2 Logging formats and levels

The following log formats are supported on CLI:

• Full logs (the default) – with timestamps, log levels, and logger names:

kopf run -v --log-format=full

[2019-11-04 17:49:25,365] kopf.reactor.activit [INFO] Initial␣
→˓authentication has been initiated.
[2019-11-04 17:49:25,650] kopf.objects [DEBUG] [default/kopf-
→˓example-1] Resuming is in progress: ...

• Plain logs, with only the message:

109

Kopf

kopf run -v --log-format=plain

Initial authentication has been initiated.
[default/kopf-example-1] Resuming is in progress: ...

For non-JSON logs, the object prefix can be disabled to make the logs completely flat (as in JSON logs):

kopf run -v --log-format=plain --no-log-prefix

Initial authentication has been initiated.
Resuming is in progress: ...

• JSON logs, with only the message:

kopf run -v --log-format=json

{"message": "Initial authentication has been initiated.", "severity": "info
→˓", "timestamp": "2020-12-31T23:59:59.123456"}
{"message": "Resuming is in progress: ...", "object": {"apiVersion": "kopf.
→˓dev/v1", "kind": "KopfExample", "name": "kopf-example-1", "uid": "...",
→˓"namespace": "default"}, "severity": "debug", "timestamp": "2020-12-
→˓31T23:59:59.123456"}

For JSON logs, the object reference key can be configured to match the log parsers (if used) – instead of the
default "object":

kopf run -v --log-format=json --log-refkey=k8s-obj

{"message": "Initial authentication has been initiated.", "severity": "info
→˓", "timestamp": "2020-12-31T23:59:59.123456"}
{"message": "Resuming is in progress: ...", "k8s-obj": {...}, "severity":
→˓"debug", "timestamp": "2020-12-31T23:59:59.123456"}

Note that the object prefixing is disabled for JSON logs by default, as the identifying information is
available in the ref-keys. The prefixing can be explicitly re-enabled if needed:

kopf run -v --log-format=json --log-prefix

{"message": "Initial authentication has been initiated.", "severity": "info
→˓", "timestamp": "2020-12-31T23:59:59.123456"}
{"message": "[default/kopf-example-1] Resuming is in progress: ...", "object
→˓": {...}, "severity": "debug", "timestamp": "2020-12-31T23:59:59.123456"}

Note: Logging verbosity and formatting are only configured via CLI options, not via settings.logging as all other
aspects of configuration. When the startup handlers happen for settings, it is too late: some initial messages could
be already logged in the existing formats, or not logged when they should be due to verbosity/quietness levels.

110 Chapter 30. Configuration

Kopf

30.3 Logging events

settings.posting allows to control which log messages should be posted as Kubernetes events. Use logging
constants or integer values to set the level: e.g., logging.WARNING, logging.ERROR, etc. The default is logging`.
INFO.

import logging
import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.posting.level = logging.ERROR

The event-posting can be disabled completely (the default is to be enabled):

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.posting.enabled = False

Note: These settings also affect kopf.event and related functions: kopf.info, kopf.warn, kopf.exception, etc
– even if they are called explicitly in the code.

To avoid these settings having an impact on your code, post events directly with an API client library instead of the
Kopf-provided toolkit.

30.4 Synchronous handlers

settings.execution allows setting the number of synchronous workers used by the operator for synchronous han-
dlers, or replace the asyncio executor with another one:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.execution.max_workers = 20

It is possible to replace the whole asyncio executor used for synchronous handlers (see Async/Await).

Please note that the handlers that started in a previous executor, will be continued and finished with their original
executor. This includes the startup handler itself. To avoid it, make the on-startup handler asynchronous:

import concurrent.futures
import kopf

@kopf.on.startup()
async def configure(settings: kopf.OperatorSettings, **_):

settings.execution.executor = concurrent.futures.ThreadPoolExecutor()

30.3. Logging events 111

Kopf

The same executor is used both for regular sync handlers and for sync daemons. If you expect a large number of
synchronous daemons (e.g. for large clusters), make sure to pre-scale the executor accordingly (the default in Python
is 5x times the CPU cores):

import kopf

@kopf.on.startup()
async def configure(settings: kopf.OperatorSettings, **kwargs):

settings.execution.max_workers = 1000

30.5 Networking timeouts

Timeouts can be controlled when communicating with Kubernetes API:

settings.networking.request_timeout (seconds) is how long a regular request should take before failing. This
applies to all atomic requests – cluster scanning, resource patching, etc. – except the watch-streams. The default is 5
minutes (300 seconds).

settings.networking.connect_timeout (seconds) is how long a TCP handshake can take for regular requests
before failing. There is no default (None), meaning that there is no timeout specifically for this; however, the handshake
is limited by the overall time of the request.

settings.watching.connect_timeout (seconds) is how long a TCP handshake can take for watch-streams before
failing. There is no default (None), which means that settings.networking.connect_timeout is used if set. If
not set, then settings.networking.request_timeout is used.

Note: With the current aiohttp-based implementation, both connection timeouts correspond to sock_connect= time-
out, not to connect= timeout, which would also include the time for getting a connection from the pool. Kopf uses
unlimited aiohttp pools, so this should not be a problem.

settings.watching.server_timeout (seconds) is how long the session with a watching request will exist before
closing it from the server side. This value is passed to the server-side in a query string, and the server decides on how
to follow it. The watch-stream is then gracefully closed. The default is to use the server setup (None).

settings.watching.client_timeout (seconds) is how long the session with a watching request will exist before
closing it from the client side. This includes establishing the connection and event streaming. The default is forever
(None).

It makes no sense to set the client-side timeout shorter than the server-side timeout, but it is given to the developers’
responsibility to decide.

The server-side timeouts are unpredictable, they can be 10 seconds or 10 minutes. Yet, it feels wrong to assume any
“good” values in a framework (especially since it works without timeouts defined, just produces extra logs).

settings.watching.reconnect_backoff (seconds) is a backoff interval between watching requests – to prevent
API flooding in case of errors or disconnects. The default is 0.1 seconds (nearly instant, but not flooding).

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.networking.connect_timeout = 10
settings.networking.request_timeout = 60
settings.watching.server_timeout = 10 * 60

112 Chapter 30. Configuration

Kopf

30.6 Finalizers

A resource is blocked from deletion if the framework believes it is safer to do so, e.g. if non-optional deletion handlers
are present or if daemons/timers are running at the moment.

For this, a finalizer is added to the object. It is removed when the framework believes it is safe to release the object for
actual deletion.

The name of the finalizer can be configured:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.persistence.finalizer = 'my-operator.example.com/kopf-finalizer'

The default is the one that was hard-coded before: kopf.zalando.org/KopfFinalizerMarker.

30.7 Handling progress

To keep the handling state across multiple handling cycles, and to be resilient to errors and tolerable to restarts and
downtimes, the operator keeps its state in a configured state storage. See more in Continuity.

To store the state only in the annotations with a preferred prefix:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.persistence.progress_storage = kopf.AnnotationsProgressStorage(prefix='my-
→˓op.example.com')

To store the state only in the status or any other field:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.persistence.progress_storage = kopf.StatusProgressStorage(field='status.my-
→˓operator')

To store in multiple places (stored in sync, but the first found state will be used when fetching, i.e. the first storage has
precedence):

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.persistence.progress_storage = kopf.MultiProgressStorage([
kopf.AnnotationsProgressStorage(prefix='my-op.example.com'),
kopf.StatusProgressStorage(field='status.my-operator'),

])

30.6. Finalizers 113

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#finalizers

Kopf

The default storage is at both annotations and status, with annotations having precedence over the status (this is done as
a transitioning solution from status-only storage in the past to annotations-only storage in the future). The annotations
are kopf.zalando.org/{id}, the status fields are status.kopf.progress.{id}. It is an equivalent of:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.persistence.progress_storage = kopf.SmartProgressStorage()

It is also possible to implement custom state storage instead of storing the state directly in the resource’s fields – e.g.,
in external databases. For this, inherit from kopf.ProgressStorage and implement its abstract methods (fetch(),
store(), purge(), optionally flush()).

Note: The legacy behavior is an equivalent of kopf.StatusProgressStorage(field='status.kopf.
progress').

Starting with Kubernetes 1.16, both custom and built-in resources have strict structural schemas with the pruning of
unknown fields (more information is in Future of CRDs: Structural Schemas).

Long story short, unknown fields are silently pruned by Kubernetes API. As a result, Kopf’s status storage will not be
able to store anything in the resource, as it will be instantly lost. (See #321.)

To quickly fix this for custom resources, modify their definitions with x-kubernetes-preserve-unknown-fields:
true. For example:

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
spec:
scope: ...
group: ...
names: ...
versions:
- name: v1
served: true
storage: true
schema:
openAPIV3Schema:
type: object
x-kubernetes-preserve-unknown-fields: true

See a more verbose example in examples/crd.yaml.

For built-in resources, such as pods, namespaces, etc, the schemas cannot be modified, so a full switch to annotations
storage is advised.

The new default “smart” storage is supposed to ensure a smooth upgrade of Kopf-based operators to the new state
location without special upgrade actions or conversions needed.

114 Chapter 30. Configuration

https://kubernetes.io/blog/2019/06/20/crd-structural-schema/
https://github.com/zalando-incubator/kopf/issues/321

Kopf

30.8 Change detection

For change-detecting handlers, Kopf keeps the last handled configuration – i.e. the last state that has been successfully
handled. New changes are compared against the last handled configuration, and a diff list is formed.

The last-handled configuration is also used to detect if there were any essential changes at all – i.e. not just the system
or status fields.

The last-handled configuration storage can be configured with settings.persistence.diffbase_storage. The
default is an equivalent of:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.persistence.diffbase_storage = kopf.AnnotationsDiffBaseStorage(
prefix='kopf.zalando.org',
key='last-handled-configuration',

)

The stored content is a JSON-serialised essence of the object (i.e., only the important fields, with system fields and
status stanza removed).

It is generally not a good idea to override this store unless multiple Kopf-based operators must handle the same re-
sources, and they should not collide with each other. In that case, they must take different names.

30.9 Storage transition

Warning: Changing a storage method for an existing operator with existing resources is dangerous: the operator
will consider all those resources as not handled yet (due to absence of a diff-base key) or will loose their progress
state (if some handlers are retried or slow). The operator will start handling each of them again – which can lead to
duplicated children or other side-effects.

To ensure a smooth transition, use a composite multi-storage, with the new storage as a first child, and the old storage
as the second child (both are used for writing, the first found value is used for reading).

For example, to eventually switch from Kopf’s annotations to a status field for diff-base storage, apply this configuration:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.persistence.diffbase_storage = kopf.MultiDiffBaseStorage([
kopf.StatusDiffBaseStorage(field='status.diff-base'),
kopf.AnnotationsDiffBaseStorage(prefix='kopf.zalando.org', key='last-handled-

→˓configuration'),
])

Run the operator for some time. Let all resources change or force this: e.g. by arbitrarily labelling them, so that a new
diff-base is generated:

30.8. Change detection 115

Kopf

kubectl label kex -l somelabel=somevalue ping=pong

Then, switch to the new storage alone, without the transitional setup.

30.10 Retrying of API errors

In some cases, the Kubernetes API servers might be not ready on startup or occasionally at runtime; the network might
have issues too. In most cases, these issues are of temporary nature and heal themselves withing seconds.

The framework retries the TCP/SSL networking errors and the HTTP 5xx errors (“the server is wrong”) — i.e. every-
thing that is presumed to be temporary; other errors – those presumed to be permanent, including HTTP 4xx errors
(“the client is wrong”) – escalate immediately without retrying.

The setting settings.networking.error_backoffs controls for how many times and with which backoff interval
(in seconds) the retries are performed.

It is a sequence of back-offs between attempts (in seconds):

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.networking.error_backoffs = [10, 20, 30]

Note that the number of attempts is one more than the number of back-off intervals (because the back-offs happen
inbetween the attempts).

A single integer or float value means a single backoff, i.e. 2 attempts: (1.0) is equivalent to (1.0,) or [1.0] for
convenience.

To have a uniform back-off delay D with N+1 attempts, set to [D] * N.

To disable retrying (on your own risk), set it to [] or ().

The default value covers roughly a minute of attempts before giving up.

Once the retries are over (if disabled, immediately on error), the API errors escalate and are then handled according to
Throttling of unexpected errors.

This value can be an arbitrary collection or an iterable object (even infinite): only iter() is called on every new
retrying cycle, no other protocols are required; however, make sure that it is re-iterable for multiple uses:

import kopf
import random

class InfiniteBackoffsWithJitter:
def __iter__(self):

while True:
yield 10 + random.randint(-5, +5)

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.networking.error_backoffs = InfiniteBackoffsWithJitter()

Retrying an API error blocks the task or the object’s worker in which the API error happens. However, other objects
and tasks run normally in parallel (unless they hit the same error in the same cluster).

116 Chapter 30. Configuration

Kopf

Every further consecutive error leads to the next, typically bigger backoff. Every success resets the backoff intervals,
and it goes from the beginning on the next error.

Note: The format is the same as for settings.batching.error_delays. The only difference: if the API operation
does not succeed by the end of the sequence, the error of the last attempt escalates instead of blocking and retrying
forever with the last delay in the sequence.

See also:

These back-offs cover only the server-side and networking errors. For errors in handlers, see Error handling. For errors
in the framework, see Throttling of unexpected errors.

30.11 Throttling of unexpected errors

To prevent an uncontrollable flood of activities in case of errors that prevent the resources being marked as handled,
which could lead to the Kubernetes API flooding, it is possible to throttle the activities on a per-resource basis:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.batching.error_delays = [10, 20, 30]

In that case, all unhandled errors in the framework or in the Kubernetes API would be backed-off by 10s after the 1st
error, then by 20s after the 2nd one, and then by 30s after the 3rd, 4th, 5th errors and so on. On the first success, the
backoff intervals will be reset and re-used again on the next error.

Once the errors stop and the operator is back to work, it processes only the latest event seen for that malfunctioning
resource (due to event batching).

The default is a sequence of Fibonacci numbers from 1 second to 10 minutes.

The back-offs are not persisted, so they are lost on the operator restarts.

These back-offs do not cover errors in the handlers – the handlers have their own per-handler back-off intervals. These
back-offs are for Kopf’s own errors.

To disable throttling (on your own risk), set it to [] or (). Interpret it as: no throttling delays set — no throttling sleeps
done.

If needed, this value can be an arbitrary collection/iterator/object: only iter() is called on every new throttling cycle,
no other protocols are required; but make sure that it is re-iterable for multiple uses.

30.11. Throttling of unexpected errors 117

Kopf

118 Chapter 30. Configuration

CHAPTER

THIRTYONE

PEERING

All running operators communicate with each other via peering objects (additional kind of custom resources), so they
know about each other.

31.1 Priorities

Each operator has a priority (the default is 0). Whenever the operator notices that other operators start with a higher
priority, it pauses its operation until those operators stop working.

This is done to prevent collisions of multiple operators handling the same objects. If two operators runs with the same
priority all operators issue a warning and freeze, so that the cluster becomes not served anymore.

To set the operator’s priority, use --priority:

kopf run --priority=100 ...

Or:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.peering.priority = 100

As a shortcut, there is a --dev option, which sets the priority to 666, and is intended for the development mode.

31.2 Scopes

There are two types of custom resources used for peering:

• ClusterKopfPeering for the cluster-scoped operators.

• KopfPeering for the namespace-scoped operators.

Kopf automatically chooses which one to use, depending on whether the operator is restricted to a namespace with
--namespace, or it is running cluster-wide with --all-namespaces.

Create a peering object as needed with one of:

119

Kopf

apiVersion: kopf.dev/v1
kind: ClusterKopfPeering
metadata:
name: example

apiVersion: kopf.dev/v1
kind: KopfPeering
metadata:
namespace: default
name: example

Note: In kopf<0.11 (until May 2019), KopfPeering was the only CRD, and it was cluster-scoped. In kopf>=0.
11,<1.29 (until Dec 2020), this mode was deprecated but supported if the old CRD existed. Since kopf>=1.29 (Jan
2021), it is not supported anymore. To upgrade, delete and re-create the peering CRDs to the new ones.

Note: In kopf<1.29, all peering CRDs used the API group kopf.zalando.org. Since kopf>=1.29 (Jan’2021),
they belong to the API group kopf.dev.

At runtime, both API groups are supported. However, these resources of different API groups are mutually exclusive
and cannot co-exist in the same cluster since they use the same names. Whenever possible, re-create them with the new
API group after the operator/framework upgrade.

31.3 Custom peering

The operator can be instructed to use alternative peering objects:

kopf run --peering=example ...
kopf run --peering=example --namespace=some-ns ...

Or:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.peering.name = "example"
settings.peering.mandatory = True

Depending on --namespace or --all-namespaces, either ClusterKopfPeering or KopfPeering will be used
automatically.

If the peering object does not exist, the operator will pause at the start. Using --peering assumes that the peering is
mandatory.

Please note that in the startup handler, this is not the same: the mandatory mode must be set explicitly. Otherwise, the
operator will try to auto-detect the presence of the custom peering object, but will not pause if it is absent – unlike with
the --peering= CLI option.

The operators from different peering objects do not see each other.

120 Chapter 31. Peering

Kopf

This is especially useful for the cluster-scoped operators for different resource kinds, which should not worry about
other operators for other kinds.

31.4 Standalone mode

To prevent an operator from peering and talking to other operators, the standalone mode can be enabled:

kopf run --standalone ...

Or:

import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.peering.standalone = True

In that case, the operator will not pause if other operators with the higher priority will start handling the objects, which
may lead to the conflicting changes and reactions from multiple operators for the same events.

31.5 Automatic peering

If there is a peering object detected with the name default (either cluster-scoped or namespace-scoped), then it is
used by default as the peering object.

Otherwise, Kopf will run the operator in the standalone mode.

31.6 Multi-pod operators

Usually, one and only one operator instance should be deployed for the resource. If that operator’s pod dies, the handling
of the resource of this type will stop until the operator’s pod is restarted (and if restarted at all).

To start multiple operator pods, they must be distinctly prioritised. In that case, only one operator will be active —
the one with the highest priority. All other operators will pause and wait until this operator exits. Once it dies, the
second-highest priority operator will come into play. And so on.

For this, assign a monotonically growing or random priority to each operator in the deployment or replicaset:

kopf run --priority=$RANDOM ...

Or:

import random
import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.peering.priority = random.randint(0, 32767)

$RANDOM is a feature of bash (if you use another shell, see its man page for an equivalent). It returns a random integer
in the range 0..32767. With high probability, 2-3 pods will get their unique priorities.

31.4. Standalone mode 121

Kopf

You can also use the pod’s IP address in its numeric form as the priority, or any other source of integers.

31.7 Stealth keep-alive

Every few seconds (60 by default), the operator will send a keep-alive update to the chosen peering, showing that it is
still functioning. Other operators will notice that and make decisions on their pausing or resuming.

The operator also logs a keep-alive activity to its logs. This can be distracting. To disable:

import random
import kopf

@kopf.on.startup()
def configure(settings: kopf.OperatorSettings, **_):

settings.peering.stealth = True

There is no equivalent CLI option for that.

Please note that it only affects logging. The keep-alive is sent anyway.

122 Chapter 31. Peering

CHAPTER

THIRTYTWO

COMMAND-LINE OPTIONS

Most of the options relate to kopf run, though some are shared by other commands, such as kopf freeze and kopf
resume.

32.1 Scripting options

-m, --module

A semantical equivalent to python -m — which importable modules to import on startup.

32.2 Logging options

--quiet

Be quiet: only show warnings and errors, but not the normal processing logs.

--verbose

Show what Kopf is doing, but hide the low-level asyncio & aiohttp logs.

--debug

Extremely verbose: log all the asyncio internals too, so as the API traffic.

--log-format (plain|full|json)

See more in Configuration.

--log-prefix, --no-log-prefix

Whether to prefix all object-related messages with the name of the object. By default, the prefixing is enabled.

--log-refkey

For JSON logs, under which top-level key to put the object-identifying information, such as its name, namespace,
etc.

123

Kopf

32.3 Scope options

-n, --namespace

Serve this namespace or all namespaces mathing the pattern (or excluded from patterns). The option can be
repeated multiple times.

See also:

Scopes for the pattern syntax.

-A, --all-namespaces

Serve the whole cluster. This is different from --namespace *: with --namespace *, the namespaces are
monitored, and every resource in every namespace is watched separately, starting and stopping as needed; with
--all-namespaces, the cluster endpoints of the Kubernetes API are used for resources, the namespaces are not
monitored.

32.4 Probing options

--liveness

The endpoint where to serve the probes and health-checks. E.g. http://0.0.0.0:1234/. Only http:// is
currently supported. By default, the probing endpoint is not served.

See also:

Health-checks

32.5 Peering options

--standalone

Disable any peering or auto-detection of peering. Run strictly as if this is the only instance of the operator.

--peering

The name of the peering object to use. Depending on the operator’s scope (--all-namespaces vs.
--namespace, see Scopes), it is either kind: KopfPeering or kind: ClusterKopfPeering.

If specified, the operator will not run until that peering exists (for the namespaced operators, until it exists in each
served namespace).

If not specified, the operator checks for the name “default” and uses it. If the “default” peering is absent, the
operator runs in standalone mode.

--priority

Which priority to use for the operator. An operator with the highest priority wins the peering competitions and
handlers the resources.

The default priority is 0; --dev sets it to 666.

See also:

Peering

124 Chapter 32. Command-line options

Kopf

32.6 Development mode

--dev

Run in the development mode. Currently, this implies --priority=666. Other meanings can be added in the
future, such as automatic reloading of the source code.

32.6. Development mode 125

Kopf

126 Chapter 32. Command-line options

CHAPTER

THIRTYTHREE

EVENTS

Warning: Kubernetes itself contains a terminology conflict: There are events when watching over the ob-
jects/resources, such as in kubectl get pod --watch. And there are events as a built-in object kind, as shown
in kubectl describe pod ... in the “Events” section. In this documentation, they are distinguished as “watch-
events” and “k8s-events”. This section describes k8s-events only.

33.1 Handled objects

Kopf provides some tools to report arbitrary information for the handled objects as Kubernetes events:

import kopf

@kopf.on.create('kopfexamples')
def create_fn(body, **_):

kopf.event(body,
type='SomeType',
reason='SomeReason',
message='Some message')

The type and reason are arbitrary and can be anything. Some restrictions apply (e.g. no spaces). The message is also
arbitrary free-text. However, newlines are not rendered nicely (they break the whole output of kubectl).

For convenience, a few shortcuts are provided to mimic the Python’s logging:

import kopf

@kopf.on.create('kopfexamples')
def create_fn(body, **_):

kopf.warn(body, reason='SomeReason', message='Some message')
kopf.info(body, reason='SomeReason', message='Some message')
try:

raise RuntimeError("Exception text.")
except:

kopf.exception(body, reason="SomeReason", message="Some exception:")

These events are seen in the output of:

kubectl describe kopfexample kopf-example-1

127

Kopf

...
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal SomeReason 5s kopf Some message
Normal Success 5s kopf Handler create_fn succeeded.
SomeType SomeReason 6s kopf Some message
Normal Finished 5s kopf All handlers succeeded.
Error SomeReason 5s kopf Some exception: Exception text.
Warning SomeReason 5s kopf Some message

33.2 Other objects

Events can be also attached to other objects, not only those handled at the moment (and not event the children):

import kopf
import kubernetes

@kopf.on.create('kopfexamples')
def create_fn(name, namespace, uid, **_):

pod = kubernetes.client.V1Pod()
api = kubernetes.client.CoreV1Api()
obj = api.create_namespaced_pod(namespace, pod)

msg = f"This pod is created by KopfExample {name}"
kopf.info(obj.to_dict(), reason='SomeReason', message=msg)

Note: Events are not persistent. They are usually garbage-collected after some time, e.g. one hour. All the reported
information must be only for short-term use.

33.3 Events for events

As a rule of thumb, it is impossible to create “events for events”.

No error will be raised. The event creation will be silently skipped.

As the primary purpose, this is done to prevent “event explosions” when handling the core v1 events, which creates
new core v1 events, causing more handling, so on (similar to “fork-bombs”). Such cases are possible, for example,
when using kopf.EVERYTHING (globally or for the v1 API), or when explicitly handling the core v1 events.

As a side-effect, “events for events” are also silenced when manually created via kopf.event(), kopf.info(), kopf.
warn(), etc.

128 Chapter 33. Events

CHAPTER

THIRTYFOUR

HIERARCHIES

One of the most common patterns of the operators is to create children resources in the same Kubernetes cluster.
Kopf provides some tools to simplify connecting these resources by manipulating their content before it is sent to the
Kubernetes API.

Note: Kopf is not a Kubernetes client library. It does not provide any means to manipulate the Kubernetes resources in
the cluster or to directly talk to the Kubernetes API in any other way. Use any of the existing libraries for that purpose,
such as the official kubernetes client, pykorm, or pykube-ng.

In all examples below, obj and objs are either a supported object type (native or 3rd-party, see below) or a
list/tuple/iterable with several objects.

34.1 Labels

To label the resources to be created, use kopf.label():

@kopf.on.create('KopfExample')
def create_fn(**_):

objs = [{'kind': 'Job'}, {'kind': 'Deployment'}]
kopf.label(objs, {'label1': 'value1', 'label2': 'value2'})
print(objs)
[{'kind': 'Job',
'metadata': {'labels': {'label1': 'value1', 'label2': 'value2'}}},
{'kind': 'Deployment',
'metadata': {'labels': {'label1': 'value1', 'label2': 'value2'}}}]

To label the specified resource(s) with the same labels as the resource being processed at the moment, omit the labels
or set them to None (note, it is not the same as an empty dict {} – which is equivalent to doing nothing):

@kopf.on.create('KopfExample')
def create_fn(**_):

objs = [{'kind': 'Job'}, {'kind': 'Deployment'}]
kopf.label(objs)
print(objs)
[{'kind': 'Job',
'metadata': {'labels': {'somelabel': 'somevalue'}}},
{'kind': 'Deployment',
'metadata': {'labels': {'somelabel': 'somevalue'}}}]

129

https://github.com/kubernetes-client/python
https://github.com/Frankkkkk/pykorm
https://github.com/hjacobs/pykube

Kopf

By default, if some of the requested labels already exist, they will not be overwritten. To overwrite labels, use
forced=True:

@kopf.on.create('KopfExample')
def create_fn(**_):

objs = [{'kind': 'Job'}, {'kind': 'Deployment'}]
kopf.label(objs, {'label1': 'value1', 'somelabel': 'not-this'}, forced=True)
kopf.label(objs, forced=True)
print(objs)
[{'kind': 'Job',
'metadata': {'labels': {'label1': 'value1', 'somelabel': 'somevalue'}}},
{'kind': 'Deployment',
'metadata': {'labels': {'label1': 'value1', 'somelabel': 'somevalue'}}}]

34.2 Nested labels

For some resources, e.g. Job or Deployment, additional fields have to be modified to affect the double-nested children
(Pod in this case).

For this, their nested fields must be mentioned in a nested=[...] iterable. If this is only one nested field, it can be
passed directly as nested='...'.

If the nested structures are absent in the target resources, they are ignored and no labels are added. The labels are added
only to pre-existing structures:

@kopf.on.create('KopfExample')
def create_fn(**_):

objs = [{'kind': 'Job'}, {'kind': 'Deployment', 'spec': {'template': {}}}]
kopf.label(objs, {'label1': 'value1'}, nested='spec.template')
kopf.label(objs, nested='spec.template')
print(objs)
[{'kind': 'Job',
'metadata': {'labels': {'label1': 'value1', 'somelabel': 'somevalue'}}},
{'kind': 'Deployment',
'metadata': {'labels': {'label1': 'value1', 'somelabel': 'somevalue'}},
'spec': {'template': {'metadata': {'labels': {'label1': 'value1', 'somelabel': 'somevalue'}

→˓}}}}]

The nested structures are treated as if they were the root-level resources, i.e. they are expected to have or automatically
get the metadata structure added.

The nested resources are labelled in addition to the target resources. To label only the nested resources without the root
resource, pass them to the function directly (e.g., kopf.label(obj['spec']['template'], ...)).

130 Chapter 34. Hierarchies

Kopf

34.3 Owner references

Kubernetes natively supports the owner references: a child resource can be marked as “owned” by one or more other
resources (owners or parents). If the owner is deleted, its children will be deleted too, automatically, and no additional
handlers are needed.

To set the ownership, use kopf.append_owner_reference(). To remove the ownership, use kopf.
remove_owner_reference():

kopf.append_owner_reference(objs, owner)
kopf.remove_owner_reference(objs, owner)

To add/remove the ownership of the requested resource(s) by the resource being processed at the moment, omit the
explicit owner argument or set it to None:

@kopf.on.create('KopfExample')
def create_fn(**_):

objs = [{'kind': 'Job'}, {'kind': 'Deployment'}]
kopf.append_owner_reference(objs)
print(objs)
[{'kind': 'Job',
'metadata': {'ownerReferences': [{'controller': True,
'blockOwnerDeletion': True,
'apiVersion': 'kopf.dev/v1',
'kind': 'KopfExample',
'name': 'kopf-example-1',
'uid': '6b931859-5d50-4b5c-956b-ea2fed0d1058'}]}},
{'kind': 'Deployment',
'metadata': {'ownerReferences': [{'controller': True,
'blockOwnerDeletion': True,
'apiVersion': 'kopf.dev/v1',
'kind': 'KopfExample',
'name': 'kopf-example-1',
'uid': '6b931859-5d50-4b5c-956b-ea2fed0d1058'}]}}]

To set an owner to not be a controller or not block owner deletion:

kopf.append_owner_reference(objs, controller=False, block_owner_deletion=False)

Both of the above are True by default

See also:

Cascaded deletion.

34.4 Names

It is common to name the children resources after the parent resource: either strictly as the parent, or with a random
suffix.

To give the resource(s) a name, use kopf.harmonize_naming(). If the resource has its metadata.name field set,
that name will be used. If it does not, the specified name will be used. It can be enforced with forced=True:

34.3. Owner references 131

Kopf

kopf.harmonize_naming(objs, 'some-name')
kopf.harmonize_naming(objs, 'some-name', forced=True)

By default, the specified name is used as a prefix, and a random suffix is requested from Kubernetes (via metadata.
generateName). This is the most widely used mode with multiple children resource of the same kind. To ensure the
exact name for single-child cases, pass strict=True:

kopf.harmonize_naming(objs, 'some-name', strict=True)
kopf.harmonize_naming(objs, 'some-name', strict=True, forced=True)

To align the name of the target resource(s) with the name of the resource being processed at the moment, omit the name
or set it to None (both strict=True and forced=True are supported in this form too):

@kopf.on.create('KopfExample')
def create_fn(**_):

objs = [{'kind': 'Job'}, {'kind': 'Deployment'}]
kopf.harmonize_naming(objs, forced=True, strict=True)
print(objs)
[{'kind': 'Job', 'metadata': {'name': 'kopf-example-1'}},
{'kind': 'Deployment', 'metadata': {'name': 'kopf-example-1'}}]

Alternatively, the operator can request Kubernetes to generate a name with the specified prefix and a random suffix (via
metadata.generateName). The actual name will be known only after the resource is created:

@kopf.on.create('KopfExample')
def create_fn(**_):

objs = [{'kind': 'Job'}, {'kind': 'Deployment'}]
kopf.harmonize_naming(objs)
print(objs)
[{'kind': 'Job', 'metadata': {'generateName': 'kopf-example-1-'}},
{'kind': 'Deployment', 'metadata': {'generateName': 'kopf-example-1-'}}]

Both ways are commonly used for parent resources that orchestrate multiple children resources of the same kind (e.g.,
pods in the deployment).

34.5 Namespaces

Usually, it is expected that the children resources are created in the same namespace as their parent (unless there are
strong reasons to do differently).

To set the desired namespace, use kopf.adjust_namespace():

kopf.adjust_namespace(objs, 'namespace')

If the namespace is already set, it will not be overwritten. To overwrite, pass forced=True:

kopf.adjust_namespace(objs, 'namespace', forced=True)

To align the namespace of the specified resource(s) with the namespace of the resource being processed, omit the
namespace or set it to None:

@kopf.on.create('KopfExample')
def create_fn(**_):

(continues on next page)

132 Chapter 34. Hierarchies

Kopf

(continued from previous page)

objs = [{'kind': 'Job'}, {'kind': 'Deployment'}]
kopf.adjust_namespace(objs, forced=True)
print(objs)
[{'kind': 'Job', 'metadata': {'namespace': 'default'}},
{'kind': 'Deployment', 'metadata': {'namespace': 'default'}}]

34.6 Adopting

All of the above can be done in one call with kopf.adopt(); forced, strict, nested flags are passed to all functions
that support them:

@kopf.on.create('KopfExample')
def create_fn(**_):

objs = [{'kind': 'Job'}, {'kind': 'Deployment'}]
kopf.adopt(objs, strict=True, forced=True, nested='spec.template')
print(objs)
[{'kind': 'Job',
'metadata': {'ownerReferences': [{'controller': True,
'blockOwnerDeletion': True,
'apiVersion': 'kopf.dev/v1',
'kind': 'KopfExample',
'name': 'kopf-example-1',
'uid': '4a15f2c2-d558-4b6e-8cf0-00585d823511'}],
'name': 'kopf-example-1',
'namespace': 'default',
'labels': {'somelabel': 'somevalue'}}},
{'kind': 'Deployment',
'metadata': {'ownerReferences': [{'controller': True,
'blockOwnerDeletion': True,
'apiVersion': 'kopf.dev/v1',
'kind': 'KopfExample',
'name': 'kopf-example-1',
'uid': '4a15f2c2-d558-4b6e-8cf0-00585d823511'}],
'name': 'kopf-example-1',
'namespace': 'default',
'labels': {'somelabel': 'somevalue'}}}]

34.7 3rd-party libraries

All described methods support resource-related classes of selected libraries the same way as the native Python dictio-
naries (or any mutable mappings). Currently, that is pykube-ng (classes based on pykube.objects.APIObject) and
kubernetes client (resource models from kubernetes.client.models).

import kopf
import pykube

@kopf.on.create('KopfExample')
def create_fn(**_):

(continues on next page)

34.6. Adopting 133

https://github.com/hjacobs/pykube
https://github.com/kubernetes-client/python

Kopf

(continued from previous page)

api = pykube.HTTPClient(pykube.KubeConfig.from_env())
pod = pykube.objects.Pod(api, {})
kopf.adopt(pod)

import kopf
import kubernetes.client

@kopf.on.create('KopfExample')
def create_fn(**_):

pod = kubernetes.client.V1Pod()
kopf.adopt(pod)
print(pod)
{'api_version': None,
'kind': None,
'metadata': {'annotations': None,
'cluster_name': None,
'creation_timestamp': None,
'deletion_grace_period_seconds': None,
'deletion_timestamp': None,
'finalizers': None,
'generate_name': 'kopf-example-1-',
'generation': None,
'labels': {'somelabel': 'somevalue'},
'managed_fields': None,
'name': None,
'namespace': 'default',
'owner_references': [{'api_version': 'kopf.dev/v1',
'block_owner_deletion': True,
'controller': True,
'kind': 'KopfExample',
'name': 'kopf-example-1',
'uid': 'a114fa89-e696-4e84-9b80-b29fbccc460c'}],
'resource_version': None,
'self_link': None,
'uid': None},
'spec': None,
'status': None}

134 Chapter 34. Hierarchies

CHAPTER

THIRTYFIVE

OPERATOR TESTING

Kopf provides some tools to test the Kopf-based operators via kopf.testing module (requires explicit importing).

35.1 Background runner

kopf.testing.KopfRunner runs an arbitrary operator in the background, while the original testing thread does the
object manipulation and assertions:

When the with block exits, the operator stops, and its exceptions, exit code and output are available to the test (for
additional assertions).

Listing 1: test_example_operator.py

import time
import subprocess
from kopf.testing import KopfRunner

def test_operator():
with KopfRunner(['run', '-A', '--verbose', 'examples/01-minimal/example.py']) as␣

→˓runner:
do something while the operator is running.

subprocess.run("kubectl apply -f examples/obj.yaml", shell=True, check=True)
time.sleep(1) # give it some time to react and to sleep and to retry

subprocess.run("kubectl delete -f examples/obj.yaml", shell=True, check=True)
time.sleep(1) # give it some time to react

assert runner.exit_code == 0
assert runner.exception is None
assert 'And here we are!' in runner.stdout
assert 'Deleted, really deleted' in runner.stdout

Note: The operator runs against the cluster which is currently authenticated — same as if would be executed with
kopf run.

135

Kopf

136 Chapter 35. Operator testing

CHAPTER

THIRTYSIX

EMBEDDING

Kopf is designed to be embeddable into other applications, which require watching over the Kubernetes resources
(custom or built-in), and handling the changes. This can be used, for example, in desktop applications or web APIs/UIs
to keep the state of the cluster and its resources in memory.

36.1 Manual execution

Since Kopf is fully asynchronous, the best way to run Kopf is to provide an event-loop in a separate thread, which is
dedicated to Kopf, while running the main application in the main thread:

import asyncio
import threading

import kopf

@kopf.on.create('kopfexamples')
def create_fn(**_):

pass

def kopf_thread():
asyncio.run(kopf.operator())

def main():
thread = threading.Thread(target=kopf_thread)
thread.start()
...
thread.join()

In the case of kopf run, the main application is Kopf itself, so its event-loop runs in the main thread.

Note: When an asyncio task runs not in the main thread, it cannot set the OS signal handlers, so a developer should
implement the termination themselves (cancellation of an operator task is enough).

137

Kopf

36.2 Manual orchestration

Alternatively, a developer can orchestrate the operator’s tasks and sub-tasks themselves. The example above is an
equivalent of the following:

def kopf_thread():
loop = asyncio.get_event_loop_policy().get_event_loop()
tasks = loop.run_until_complete(kopf.spawn_tasks())
loop.run_until_complete(kopf.run_tasks(tasks, return_when=asyncio.FIRST_COMPLETED))

Or, if proper cancellation and termination are not expected, of the following:

def kopf_thread():
loop = asyncio.get_event_loop_policy().get_event_loop()
tasks = loop.run_until_complete(kopf.spawn_tasks())
loop.run_until_complete(asyncio.wait(tasks))

In all cases, make sure that asyncio event loops are properly used. Specifically, asyncio.run() creates and finalises
a new event loop for a single call. Several calls cannot share the coroutines and tasks. To make several calls, either
create a new event loop, or get the event loop of the current asyncio _context_ (by default, of the current thread). See
more on the asyncio event loops and _contexts_ in Asyncio Policies.

36.3 Custom event loops

Kopf can run in any AsyncIO-compatible event loop. For example, uvloop claims to be 2x–2.5x times faster than
asyncio. To run Kopf in uvloop, call it this way:

import kopf
import uvloop

def main():
loop = uvloop.EventLoopPolicy().get_event_loop()
loop.run(kopf.operator())

Or this way:

import kopf
import uvloop

def main():
kopf.run(loop=uvloop.EventLoopPolicy().new_event_loop())

Or this way:

import kopf
import uvloop

def main():
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
kopf.run()

Or any other way the event loop prescribes in its documentation.

138 Chapter 36. Embedding

https://docs.python.org/3/library/asyncio-runner.html#asyncio.run
https://docs.python.org/3/library/asyncio-policy.html
http://magic.io/blog/uvloop-blazing-fast-python-networking/

Kopf

Kopf’s CLI (i.e. kopf run) will use uvloop by default if it is installed. To disable this implicit behaviour, either
uninstall uvloop from Kopf’s environment, or run Kopf explicitly from the code using the standard event loop.

For convenience, Kopf can be installed as pip install kopf[uvloop] to enable this mode automatically.

Kopf will never implicitly activate the custom event loops if it is called from the code, not from the CLI.

36.4 Multiple operators

Kopf can handle multiple resources at a time, so only one instance should be sufficient for most cases. However, it can
be needed to run multiple isolated operators in the same process.

It should be safe to run multiple operators in multiple isolated event-loops. Despite Kopf’s routines use the global state,
all such a global state is stored in contextvars containers with values isolated per-loop and per-task.

import asyncio
import threading

import kopf

registry = kopf.OperatorRegistry()

@kopf.on.create('kopfexamples', registry=registry)
def create_fn(**_):

pass

def kopf_thread():
asyncio.run(kopf.operator(

registry=registry,
))

def main():
thread = threading.Thread(target=kopf_thread)
thread.start()
...
thread.join()

Warning: It is not recommended to run Kopf in the same event-loop as other routines or applications: it considers
all tasks in the event-loop as spawned by its workers and handlers, and cancels them when it exits.

There are some basic safety measures to not cancel tasks existing prior to the operator’s startup, but that cannot be
applied to the tasks spawned later due to asyncio implementation details.

36.4. Multiple operators 139

https://docs.python.org/3/library/contextvars.html#module-contextvars

Kopf

140 Chapter 36. Embedding

CHAPTER

THIRTYSEVEN

DEPLOYMENT

Kopf can be executed out of the cluster, as long as the environment is authenticated to access the Kubernetes API. But
normally, the operators are usually deployed directly to the clusters.

37.1 Docker image

First of all, the operator must be packaged as a docker image with Python 3.8 or newer:

Listing 1: Dockerfile

FROM python:3.12
RUN pip install kopf
ADD . /src
CMD kopf run /src/handlers.py --verbose

Build and push it to some repository of your choice. Here, we will use DockerHub (with a personal account “nolar” –
replace it with your name or namespace; you may also want to add the versioning tags instead of the implied “latest”):

docker build -t nolar/kopf-operator .
docker push nolar/kopf-operator

See also:

Read DockerHub documentation for how to use it to push & pull the docker images.

37.2 Cluster deployment

The best way to deploy the operator to the cluster is via the Deployment object: in that case, it will be properly main-
tained alive and the versions will be properly upgraded on the re-deployments.

For this, create the deployment file:

Listing 2: deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
name: kopfexample-operator

spec:
replicas: 1

(continues on next page)

141

https://hub.docker.com/
https://docs.docker.com/docker-hub/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Kopf

(continued from previous page)

strategy:
type: Recreate

selector:
matchLabels:
application: kopfexample-operator

template:
metadata:
labels:
application: kopfexample-operator

spec:
serviceAccountName: kopfexample-account
containers:
- name: the-only-one
image: nolar/kopf-operator

Please note that there is only one replica. Keep it so. If there will be two or more operators running in the cluster for
the same objects, they will collide with each other and the consequences are unpredictable. In case of pod restarts, only
one pod should be running at a time too: use .spec.strategy.type=Recreate (see the documentation).

Deploy it to the cluster:

kubectl apply -f deployment.yaml

No services or ingresses are needed (unlike in the typical web-app examples), as the operator is not listening for any
incoming connections, but only makes the outcoming calls to the Kubernetes API.

37.3 RBAC

The pod where the operator runs must have the permissions to access and to manipulate the objects, both domain-
specific and the built-in ones. For the example operator, those are:

• kind: ClusterKopfPeering for the cross-operator awareness (cluster-wide).

• kind: KopfPeering for the cross-operator awareness (namespace-wide).

• kind: KopfExample for the example operator objects.

• kind: Pod/Job/PersistentVolumeClaim as the children objects.

• And others as needed.

For that, the RBAC (Role-Based Access Control) could be used and attached to the operator’s pod via a service account.

Here is an example of what an RBAC config should look like (remove the parts which are not needed: e.g. the cluster
roles/bindings for the strictly namespace-bound operator):

Listing 3: rbac.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
namespace: "{{NAMESPACE}}"
name: kopfexample-account

(continues on next page)

142 Chapter 37. Deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#recreate-deployment
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Kopf

(continued from previous page)

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: kopfexample-role-cluster

rules:

Framework: knowing which other operators are running (i.e. peering).
- apiGroups: [kopf.dev]
resources: [clusterkopfpeerings]
verbs: [list, watch, patch, get]

Framework: runtime observation of namespaces & CRDs (addition/deletion).
- apiGroups: [apiextensions.k8s.io]
resources: [customresourcedefinitions]
verbs: [list, watch]

- apiGroups: [""]
resources: [namespaces]
verbs: [list, watch]

Framework: admission webhook configuration management.
- apiGroups: [admissionregistration.k8s.io/v1, admissionregistration.k8s.io/v1beta1]
resources: [validatingwebhookconfigurations, mutatingwebhookconfigurations]
verbs: [create, patch]

Application: read-only access for watching cluster-wide.
- apiGroups: [kopf.dev]
resources: [kopfexamples]
verbs: [list, watch]

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: "{{NAMESPACE}}"
name: kopfexample-role-namespaced

rules:

Framework: knowing which other operators are running (i.e. peering).
- apiGroups: [kopf.dev]
resources: [kopfpeerings]
verbs: [list, watch, patch, get]

Framework: posting the events about the handlers progress/errors.
- apiGroups: [""]
resources: [events]
verbs: [create]

Application: watching & handling for the custom resource we declare.
- apiGroups: [kopf.dev]
resources: [kopfexamples]
verbs: [list, watch, patch]

Application: other resources it produces and manipulates.

(continues on next page)

37.3. RBAC 143

Kopf

(continued from previous page)

Here, we create Jobs+PVCs+Pods, but we do not patch/update/delete them ever.
- apiGroups: [batch, extensions]
resources: [jobs]
verbs: [create]

- apiGroups: [""]
resources: [pods, persistentvolumeclaims]
verbs: [create]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kopfexample-rolebinding-cluster

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kopfexample-role-cluster

subjects:
- kind: ServiceAccount
name: kopfexample-account
namespace: "{{NAMESPACE}}"

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
namespace: "{{NAMESPACE}}"
name: kopfexample-rolebinding-namespaced

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: kopfexample-role-namespaced

subjects:
- kind: ServiceAccount
name: kopfexample-account

And the created service account is attached to the pods as follows:

Listing 4: deployment.yaml

apiVersion: apps/v1
kind: Deployment
spec:
template:
spec:
serviceAccountName: kopfexample-account
containers:
- name: the-only-one
image: nolar/kopf-operator

Please note that the service accounts are always namespace-scoped. There are no cluster-wide service accounts. They
must be created in the same namespace as the operator is going to run in (even if it is going to serve the whole cluster).

144 Chapter 37. Deployment

CHAPTER

THIRTYEIGHT

CONTINUITY

38.1 Persistence

Kopf does not have any database. It stores all the information directly on the objects in the Kubernetes cluster (which
means etcd usually). All information is retrieved and stored via the Kubernetes API.

Specifically:

• The cross-operator exchange is performed via peering objects of type KopfPeering or ClusterKopfPeering
(API versions: either kopf.dev/v1 or zalando.org/v1). See Peering for more info.

• The last handled state of the object is stored in metadata.annotations (the kopf.zalando.org/
last-handled-configuration annotation). It is used to calculate diffs upon changes.

• The handlers’ state (failures, successes, retries, delays) is stored in either metadata.annotations (kopf.
zalando.org/{id} keys), or in status.kopf.progress.{id}, where {id} is the handler’s id.

The persistent state locations can be configured to use different keys, thus allowing multiple independent operators to
handle the same resources without overlapping with each other. The above-mentioned keys are the defaults. See how
to configure the stores in Configuration (at Handling progress, Change detection).

38.2 Restarts

It is safe to kill the operator’s pod (or process) and allow it to restart.

The handlers that succeeded previously will not be re-executed. The handlers that did not execute yet, or were scheduled
for retrying, will be retried by a new operators pod/process from the point where the old pod/process was terminated.

Restarting an operator will only affect the handlers currently being executed in that operator at the moment of termi-
nation, as there is no record that they have succeeded.

38.3 Downtime

If the operator is down and not running, any changes to the objects are ignored and not handled. They will be handled
when the operator starts: every time a Kopf-based operator starts, it lists all objects of the resource kind, and checks
for their state; if the state has changed since the object was last handled (no matter how long time ago), a new handling
cycle starts.

Only the last state is taken into account. All the intermediate changes are accumulated and handled together. This
corresponds to Kubernetes’s concept of eventual consistency and level triggering (as opposed to edge triggering).

145

Kopf

Warning: If the operator is down, the objects may not be deleted, as they may contain the Kopf’s finalizers in
metadata.finalizers, and Kubernetes blocks the deletion until all finalizers are removed. If the operator is not
running, the finalizers will never be removed. See: kubectl freezes on object deletion for a work-around.

146 Chapter 38. Continuity

CHAPTER

THIRTYNINE

IDEMPOTENCE

Kopf provides tools to make the handlers idempotent.

The kopf.register() function and the kopf.subhandler() decorator allow to schedule arbitrary sub-handlers for
the execution in the current cycle.

kopf.execute() coroutine executes arbitrary sub-handlers directly in the place of invocation, and returns when all
they have succeeded.

Every one of the sub-handlers is tracked by Kopf, and will not be executed twice within one handling cycle.

import functools
import kopf

@kopf.on.create('kopfexamples')
async def create(spec, namespace, **kwargs):

print("Entering create()!") # executed ~7 times.
await kopf.execute(fns={

'a': create_a,
'b': create_b,

})
print("Leaving create()!") # executed 1 time only.

async def create_a(retry, **kwargs):
if retry < 2:

raise kopf.TemporaryError("Not ready yet.", delay=10)

async def create_b(retry, **kwargs):
if retry < 6:

raise kopf.TemporaryError("Not ready yet.", delay=10)

In this example, both create_a & create_b are submitted to Kopf as the sub-handlers of create on every attempt
to execute it. It means, every ~10 seconds until both of the sub-handlers succeed, and the main handler succeeds too.

The first one, create_a, will succeed on the 3rd attempt after ~20s. The second one, create_b, will succeed only on
the 7th attempt after ~60s.

However, despite create_a will be submitted whenever create and create_b are retried, it will not be executed in
the 20s..60s range, as it has succeeded already, and the record about this is stored on the object.

This approach can be used to perform operations, which needs protection from double-execution, such as the children
object creation with randomly generated names (e.g. Pods, Jobs, PersistentVolumeClaims, etc).

See also:

Data Persistence, Sub-handlers.

147

https://docs.python.org/3/library/persistence.html#persistence

Kopf

148 Chapter 39. Idempotence

CHAPTER

FORTY

RECONCILIATION

Reconciliation is, in plain words, bringing the actual state of a system to a desired state as expressed by the Kubernetes
resources. For example, starting as many pods, as it is declared in a deployment, especially when this declaration
changes due to resource updates.

Kopf is not an operator, it is a framework to make operators. Therefore, it knows nothing about the desired state or
actual state (or any state at all).

Kopf-based operators must implement the checks and reactions to the changes, so that both states are synchronised
according to the operator’s concepts.

Kopf only provides a few ways and tools for achieving this easily.

40.1 Event-driven reactions

Normally, Kopf triggers the on-creation/on-update/on-deletion handlers every time anything changes on the object, as
reported by Kubernetes API. It provides both the current state of the object and a diff list with the last handled state.

The event-driven approach is the best, as it saves system resources (RAM & CPU), and does not trigger any activity
when it is not needed and does not consume memory for keeping the object’s last known state permanently in memory.

But it is more difficult to develop, and is not suitable for some cases: e.g., when an external non-Kubernetes system is
monitored via its API.

See also:

Handlers

40.2 Regularly scheduled timers

Timers are triggered on a regular schedule, regardless of whether anything changes or does not change in the resource
itself. This can be used to verify both the resource’s body, and the state of other related resources through API calls,
and update the original resource’s status/content.

See also:

Timers

149

Kopf

40.3 Permanently running daemons

As a last resort, a developer can implement a background task, which checks the status of the system and reacts when
the “actual” state diverts from the “desired” state.

See also:

Daemons

40.4 What to use when?

As a rule of thumb _(recommended, but not insisted)_, the following guidelines can be used to decide which way of
reconciliation to use in which cases:

• In the first place, try the event-driven approach by watching for the children resources (those belonging to the
“actual” state).

If there are many children resources for one parent resource, store their brief statuses on the parent’s status.
children.{id} from every individual child, and react to the changes of status.children in the parent re-
source.

• If the “desired” state can be queried with blocking waits (e.g. by running a GET query on a remote job/task/activity
via an API, which blocks until the requested condition is reached), then use daemons to poll for the status, and
process it as soon as it changes.

• If the “desired” state is not Kubernetes-related, maybe it is an external system accessed by an API, or if delays
in reconciliation are acceptable, then use the timers.

• Only as the last resort, use the daemons with a while True cycle and explicit sleep.

150 Chapter 40. Reconciliation

CHAPTER

FORTYONE

TIPS & TRICKS

41.1 Excluding handlers forever

Both successful executions and permanent errors of change-detecting handlers only exclude these handlers from the
current handling cycle, which is scoped to the current change-set (i.e. one diff of an object). On the next change, the
handlers will be invoked again, regardless of their previous permanent error.

The same is valid for the daemons: they will be spawned on the next operator restart (assuming that one operator
process is one handling cycle for daemons).

To prevent handlers or daemons from being invoked for a specific resource ever again, even after the operator restarts,
use annotations and filters (or the same for labels or arbitrary fields with when= callback filtering):

import kopf

@kopf.on.update('kopfexamples', annotations={'update-fn-never-again': kopf.ABSENT})
def update_fn(patch, **_):

patch.metadata.annotations['update-fn-never-again'] = 'yes'
raise kopf.PermanentError("Never call update-fn again.")

@kopf.daemon('kopfexamples', annotations={'monitor-never-again': kopf.ABSENT})
async def monitor_kex(patch, **kwargs):

patch.metadata.annotations['monitor-never-again'] = 'yes'

Such a never-again exclusion might be implemented as a feature of Kopf one day, but it is not available now – if not
done explicitly as shown above.

151

Kopf

152 Chapter 41. Tips & Tricks

CHAPTER

FORTYTWO

TROUBLESHOOTING

42.1 kubectl freezes on object deletion

This can happen if the operator is down at the moment of deletion.

The operator puts the finalizers on the objects as soon as it notices them for the first time. When the objects are requested
for deletion, Kopf calls the deletion handlers and removes the finalizers, thus releasing the object for the actual deletion
by Kubernetes.

If the object has to be deleted without the operator starting again, you can remove the finalizers manually:

kubectl patch kopfexample kopf-example-1 -p '{"metadata": {"finalizers": []}}' --type␣
→˓merge

The object will be removed by Kubernetes immediately.

Alternatively, restart the operator, and allow it to remove the finalizers.

153

Kopf

154 Chapter 42. Troubleshooting

CHAPTER

FORTYTHREE

MINIKUBE

To develop the framework and the operators in an isolated Kubernetes cluster, use minikube.

MacOS:

brew install minikube
brew install hyperkit

minikube start --driver=hyperkit
minikube config set driver hyperkit

Start the minikube cluster:

minikube start
minikube dashboard

It automatically creates and activates the kubectl context named minikube. If not, or if you have multiple clusters,
activate it explicitly:

kubectl config get-contexts
kubectl config current-context
kubectl config use-context minikube

For the minikube cleanup (to release the CPU/RAM/disk resources):

minikube stop
minikube delete

See also:

For even more information, read the Minikube installation manual.

155

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/

Kopf

156 Chapter 43. Minikube

CHAPTER

FORTYFOUR

CONTRIBUTING

In a nutshell, to contribute, follow this scenario:

• Fork the repo in GitHub.

• Clone the fork.

• Check out a feature branch.

• Implement the changes. * Lint with pre-commit run. * Test with pytest.

• Sign-off your commits.

• Create a pull request.

• Ensure all required checks are passed.

• Wait for a review by the project maintainers.

44.1 Git workflow

Kopf uses Git Forking Workflow. It means, all the development should happen in the individual forks, not in the feature
branches of the main repo.

The recommended setup:

• Fork a repo on GitHub and clone the fork (not the original repo).

• Configure the upstream remote in addition to origin:

git remote add upstream git@github.com:nolar/kopf.git
git fetch upstream

• Sync your main branch with the upstream regularly:

git checkout main
git pull upstream main --ff
git push origin main

Work in the feature branches of your fork, not in the upstream’s branches:

• Create a feature branch in the fork:

git checkout -b feature-x
git push origin feature-x

• Once the feature is ready, create a pull request from your fork to the main repo.

157

Kopf

See also:

• Overview of the Forking Workflow.

• GitHub’s manual on forking

• GitHub’s manual on syncing the fork

44.2 Git conventions

The more rules you have, the less they are followed.

Kopf tries to avoid any written rules and to follow human habits and intuitive expectations where possible. Therefore:

• Write clear and explanatory commit messages and PR titles. Read How to Write a Git Commit Message for
examples.

• Avoid commits’ or PRs’ prefixes/suffixes with the issues or change types. In general, keep the git log clean – this
will later go to the changelogs.

• Sign-off your commits for DCO (see below).

No more other rules.

44.3 DCO sign-off

All contributions (including pull requests) must agree to the Developer Certificate of Origin (DCO) version 1.1. This
is the same one created and used by the Linux kernel developers and posted on http://developercertificate.org/.

This is a developer’s certification that they have the right to submit the patch for inclusion into the project.

Simply submitting a contribution implies this agreement. However, please include a “Signed-off-by” tag in every patch
(this tag is a conventional way to confirm that you agree to the DCO):

The sign-off can be either written manually or added with git commit -s. If you contribute often, you can automate
this in Kopf’s repo with a [Git hook](https://stackoverflow.com/a/46536244/857383).

44.4 Code style

Common sense is the best code formatter. Blend your code into the surrounding code style.

Kopf does not use and will never use strict code formatters (at least until they acquire common sense and context
awareness). In case of doubt, adhere to PEP-8 and [Google Python Style Guide](https://google.github.io/styleguide/
pyguide.html).

The line length is 100 characters for code, 80 for docstrings and RsT files. Long URLs can exceed this length.

For linting, minor code styling, import sorting, layered modules checks, run:

pre-commit run

158 Chapter 44. Contributing

https://gist.github.com/Chaser324/ce0505fbed06b947d962
https://help.github.com/en/articles/fork-a-repo
https://help.github.com/en/articles/syncing-a-fork
https://chris.beams.io/posts/git-commit/
http://developercertificate.org/
https://stackoverflow.com/a/46536244/857383
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html

Kopf

44.5 Tests

If possible, run the unit-tests locally before submitting (this will save you some time, but is not mandatory):

pytest

If possible, run the functional tests with a realistic local cluster (for examples, with k3s/k3d on MacOS; Kind and
Minikube are also fine):

brew install k3d
k3d cluster create
pytest --only-e2e

If not possible, create a PR draft instead of a PR, and check the GitHub Actions’ results for unit- & functional tests, fix
as needed, and promote the PR draft into a PR once everything is ready.

44.6 Reviews

If possible, refer to an issue for which the PR is created in the PR’s body. You can use one of the existing or closed
issues that match your topic best.

The PRs can be reviewed and commented by anyone, but can be approved only by the project maintainers.

44.5. Tests 159

Kopf

160 Chapter 44. Contributing

CHAPTER

FORTYFIVE

ARCHITECTURE

45.1 Layered layout

The framework is organized into several layers, and the layers are layered too. The higher-level layers and modules can
import the lower-level ones, but not vice versa. The layering is checked and enforced by import-linter.

45.1.1 Root

At the topmost level, the framework consists of cogs, core, and kits, and user-facing modules.

kopf, kopf.on, kopf.testing are the public interface that can be imported by operator developers. Only these public
modules contain all public promises on names and signatures. Everything else is an implementation detail.

The internal modules are intentionally hidden (by underscore-naming) to protect against introducing the dependencies
on the implementation details that can change without warnings.

cogs are utilities used throughout the framework in nearly all modules. They do not represent the main functionality of
operators but are needed to make them work. Generally, the cogs are fully independent of each other and of anything
in the framework — to the point that they can be extracted as separate libraries (in theory; if anyone needs it).

core is the main functionality used by a Kopf-based operator. It brings the operators into motion. The core is the
essence of the framework, it cannot be extracted or replaced without redefining the framework.

kits are utilities and specialised tools provided to operator developers for some scenarios and/or settings. The frame-
work itself does not use them.

45.1.2 Cogs

helpers are system-level or language-enhancing adapters. E.g., hostname identification, dynamic Python module
importing, integrations with 3rd-party libraries (such as pykube-ng or the official Kubernetes Python client).

aiokits are asynchronous primitives and enhancements for asyncio, sufficiently abstracted from the framework and
the Kubernetes/operator domains.

structs are data structures and type declarations for Kubernetes models: such as resource kinds, selectors, bodies
or their parts (specs, statuses, etc), admission reviews, so on. Besides, this includes some specialised structures, such
as authentication credentials – also abstracted for the framework even in case the clients and their authentication are
replaced.

configs are the settings mostly, and everything needed to define them: e.g. persistence storage classes (for handling
progress and diff bases).

clients are the asynchronous adapters and wrappers for the Kubernetes API. They abstract away how the framework
communicates with the API to achieve its goals (such as patching a resource or watching for its changes). Currently,

161

https://github.com/seddonym/import-linter/

Kopf

Fig. 1: Note: only the essential module dependencies are shown, not all of them. All other numerous imports are
represented by cross-layer dependencies.

162 Chapter 45. Architecture

Kopf

it is based on aiohttp; previously, it was the official Kubernetes client library and pykube-ng. Over time, the whole
clients’ implementation can be replaced with another one — while keeping the signatures for the rest of the framework.
Only the clients are allowed to talk to the Kubernetes API.

45.1.3 Core

actions is the lowest level in the core (but not in the framework). It defines how the functions and handlers are invoked,
which ones specifically, how their errors are handled and retried (if at all), how the function results and the patches are
applied to the cluster, so on.

intents are mostly data structures that store the declared handlers of the operators, but also some logic to select/filter
them when a reaction is needed.

engines are specialised aspects of the framework, i.e. its functionality. Engines are usually independent of each other
(though, this is not a rule). For example, daemons and timers, validating/mutating admission requests, in-memory
indexing, operator activities (authentication, probing, etc), peering, Kubernetes kind: Event delayed posting, etc.

reactor is the topmost layer in the framework. It defines the entry points for the CLI and operator embedding (see
Embedding) and implements the task orchestration for all the engines and internal machinery. Besides, the reactor
observes the cluster for resources and namespaces, and dynamically spawns/stops the tasks to serve them.

45.1.4 Kits

hierarchies are helper functions to manage the hierarchies of Kubernetes objects, such as labelling them,
adding/removing the owner references, name generation, so on. They support raw Python dicts so as some selected
libraries: pykube-ng and the official Kubernetes client for Python (see Hierarchies).

webhooks are helper servers and tunnels to accept admission requests from a Kubernetes cluster even if running locally
on a developer’s machines (see Admission control).

runner is a helper to run an operator in a Python context manager, mostly useful for testing (see Operator testing).

45.1. Layered layout 163

https://github.com/aio-libs/aiohttp

Kopf

164 Chapter 45. Architecture

CHAPTER

FORTYSIX

KOPF PACKAGE

The main Kopf module for all the exported functions & classes.

kopf.register(fn, *, id=None, param=None, errors=None, timeout=None, retries=None, backoff=None,
labels=None, annotations=None, when=None)

Register a function as a sub-handler of the currently executed handler.

Example:

@kopf.on.create('kopfexamples')
def create_it(spec, **kwargs):

for task in spec.get('tasks', []):

def create_single_task(task=task, **_):
pass

kopf.register(id=task, fn=create_single_task)

This is efficiently an equivalent for:

@kopf.on.create('kopfexamples')
def create_it(spec, **kwargs):

for task in spec.get('tasks', []):

@kopf.subhandler(id=task)
def create_single_task(task=task, **_):

pass

Return type
Callable[..., Union[object, None, Coroutine[None, None, Optional[object]]]]

Parameters

• fn (Callable[[...], object | None | Coroutine[None, None, object |
None]]) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

165

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Kopf

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

async kopf.execute(*, fns=None, handlers=None, registry=None, lifecycle=None, cause=None)
Execute the handlers in an isolated lifecycle.

This function is just a public wrapper for execute with multiple ways to specify the handlers: either as the raw
functions, or as the pre-created handlers, or as a registry (as used in the object handling).

If no explicit functions or handlers or registry are passed, the sub-handlers of the current handler are assumed,
as accumulated in the per-handler registry with @kopf.subhandler.

If the call to this method for the sub-handlers is not done explicitly in the handler, it is done implicitly after the
handler is exited. One way or another, it is executed for the sub-handlers.

Return type
None

Parameters

• fns (Iterable[Callable[[...], object | None | Coroutine[None, None,
object | None]]] | None) –

• handlers (Iterable[ChangingHandler] | None) –

• registry (ChangingRegistry | None) –

• lifecycle (LifeCycleFn | None) –

• cause (Cause | None) –

kopf.daemon(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None, backoff=None,
initial_delay=None, cancellation_backoff=None, cancellation_timeout=None,
cancellation_polling=None, labels=None, annotations=None, when=None, field=None, value=None,
registry=None)

@kopf.daemon() decorator for the background threads/tasks.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

166 Chapter 46. kopf package

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Kopf

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• initial_delay (float | None) –

• cancellation_backoff (float | None) –

• cancellation_timeout (float | None) –

• cancellation_polling (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.timer(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None, backoff=None,
interval=None, initial_delay=None, sharp=None, idle=None, labels=None, annotations=None,
when=None, field=None, value=None, registry=None)

@kopf.timer() handler for the regular events.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

167

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Kopf

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• interval (float | None) –

• initial_delay (float | None) –

• sharp (bool | None) –

• idle (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.index(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None, backoff=None,
labels=None, annotations=None, when=None, field=None, value=None, registry=None)

@kopf.index() handler for the indexing callbacks.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

168 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Kopf

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.configure(debug=None, verbose=None, quiet=None, log_format=LogFormat.FULL, log_prefix=False,
log_refkey=None)

Return type
None

Parameters

• debug (bool | None) –

• verbose (bool | None) –

• quiet (bool | None) –

• log_format (LogFormat) –

• log_prefix (bool | None) –

• log_refkey (str | None) –

class kopf.LogFormat(value, names=None, *values, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

Log formats, as specified on CLI.

PLAIN = '%(message)s'

FULL = '[%(asctime)s] %(name)-20.20s [%(levelname)-8.8s] %(message)s'

JSON = '-json-'

kopf.login_via_pykube(*, logger, **_)

Return type
Optional[ConnectionInfo]

169

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.Optional

Kopf

Parameters

• logger (Logger | LoggerAdapter) –

• _ (Any) –

kopf.login_via_client(*, logger, **_)

Return type
Optional[ConnectionInfo]

Parameters

• logger (Logger | LoggerAdapter) –

• _ (Any) –

kopf.login_with_kubeconfig(**_)
A minimalistic login handler that can get raw data from a kubeconfig file.

Authentication capabilities can be limited to keep the code short & simple. No parsing or sophisticated multi-step
token retrieval is performed.

This login function is intended to make Kopf runnable in trivial cases when neither pykube-ng nor the official
client library are installed.

Return type
Optional[ConnectionInfo]

Parameters
_ (Any) –

kopf.login_with_service_account(**_)
A minimalistic login handler that can get raw data from a service account.

Authentication capabilities can be limited to keep the code short & simple. No parsing or sophisticated multi-step
token retrieval is performed.

This login function is intended to make Kopf runnable in trivial cases when neither pykube-ng nor the official
client library are installed.

Return type
Optional[ConnectionInfo]

Parameters
_ (Any) –

exception kopf.LoginError

Bases: Exception

Raised when the operator cannot login to the API.

class kopf.ConnectionInfo(server, ca_path=None, ca_data=None, insecure=None, username=None,
password=None, scheme=None, token=None, certificate_path=None,
certificate_data=None, private_key_path=None, private_key_data=None,
default_namespace=None, priority=0, expiration=None)

Bases: object

A single endpoint with specific credentials and connection flags to use.

Parameters

• server (str) –

• ca_path (str | None) –

170 Chapter 46. kopf package

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Kopf

• ca_data (bytes | None) –

• insecure (bool | None) –

• username (str | None) –

• password (str | None) –

• scheme (str | None) –

• token (str | None) –

• certificate_path (str | None) –

• certificate_data (bytes | None) –

• private_key_path (str | None) –

• private_key_data (bytes | None) –

• default_namespace (str | None) –

• priority (int) –

• expiration (datetime | None) –

server: str

ca_path: Optional[str] = None

ca_data: Optional[bytes] = None

insecure: Optional[bool] = None

username: Optional[str] = None

password: Optional[str] = None

scheme: Optional[str] = None

token: Optional[str] = None

certificate_path: Optional[str] = None

certificate_data: Optional[bytes] = None

private_key_path: Optional[str] = None

private_key_data: Optional[bytes] = None

default_namespace: Optional[str] = None

priority: int = 0

expiration: Optional[datetime] = None

kopf.event(objs, *, type, reason, message='')

Return type
None

Parameters

• objs (Body | Iterable[Body]) –

• type (str) –

171

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

Kopf

• reason (str) –

• message (str) –

kopf.info(objs, *, reason, message='')

Return type
None

Parameters

• objs (Body | Iterable[Body]) –

• reason (str) –

• message (str) –

kopf.warn(objs, *, reason, message='')

Return type
None

Parameters

• objs (Body | Iterable[Body]) –

• reason (str) –

• message (str) –

kopf.exception(objs, *, reason='', message='', exc=None)

Return type
None

Parameters

• objs (Body | Iterable[Body]) –

• reason (str) –

• message (str) –

• exc (BaseException | None) –

async kopf.spawn_tasks(*, lifecycle=None, indexers=None, registry=None, settings=None, memories=None,
insights=None, identity=None, standalone=None, priority=None,
peering_name=None, liveness_endpoint=None, clusterwide=False, namespaces=(),
namespace=None, stop_flag=None, ready_flag=None, vault=None, memo=None,
_command=None)

Spawn all the tasks needed to run the operator.

The tasks are properly inter-connected with the synchronisation primitives.

Return type
Collection[Task]

Parameters

• lifecycle (LifeCycleFn | None) –

• indexers (OperatorIndexers | None) –

• registry (OperatorRegistry | None) –

• settings (OperatorSettings | None) –

172 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/typing.html#typing.Collection

Kopf

• memories (ResourceMemories | None) –

• insights (Insights | None) –

• identity (Identity | None) –

• standalone (bool | None) –

• priority (int | None) –

• peering_name (str | None) –

• liveness_endpoint (str | None) –

• clusterwide (bool) –

• namespaces (Collection[str | Pattern[str]]) –

• namespace (str | Pattern[str] | None) –

• stop_flag (Future | Event | Future | Event | None) –

• ready_flag (Future | Event | Future | Event | None) –

• vault (Vault | None) –

• memo (object | None) –

• _command (Coroutine[None, None, None] | None) –

async kopf.run_tasks(root_tasks, *, ignored=frozenset({}))
Orchestrate the tasks and terminate them gracefully when needed.

The root tasks are expected to run forever. Their number is limited. Once any of them exits, the whole operator
and all other root tasks should exit.

The root tasks, in turn, can spawn multiple sub-tasks of various purposes. They can be awaited, monitored, or
fired-and-forgot.

The hung tasks are those that were spawned during the operator runtime, and were not cancelled/exited on the
root tasks termination. They are given some extra time to finish, after which they are forcely terminated too.
:rtype: None

Note: Due to implementation details, every task created after the operator’s startup is assumed to be a task or
a sub-task of the operator. In the end, all tasks are forcely cancelled. Even if those tasks were created by other
means. There is no way to trace who spawned what. Only the tasks that existed before the operator startup are
ignored (for example, those that spawned the operator itself).

Parameters

• root_tasks (Collection[Task]) –

• ignored (Collection[Task]) –

Return type
None

async kopf.operator(*, lifecycle=None, indexers=None, registry=None, settings=None, memories=None,
insights=None, identity=None, standalone=None, priority=None, peering_name=None,
liveness_endpoint=None, clusterwide=False, namespaces=(), namespace=None,
stop_flag=None, ready_flag=None, vault=None, memo=None, _command=None)

173

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Pattern
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Pattern
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Collection

Kopf

Run the whole operator asynchronously.

This function should be used to run an operator in an asyncio event-loop if the operator is orchestrated explicitly
and manually.

It is efficiently spawn_tasks + run_tasks with some safety.

Return type
None

Parameters

• lifecycle (LifeCycleFn | None) –

• indexers (OperatorIndexers | None) –

• registry (OperatorRegistry | None) –

• settings (OperatorSettings | None) –

• memories (ResourceMemories | None) –

• insights (Insights | None) –

• identity (Identity | None) –

• standalone (bool | None) –

• priority (int | None) –

• peering_name (str | None) –

• liveness_endpoint (str | None) –

• clusterwide (bool) –

• namespaces (Collection[str | Pattern[str]]) –

• namespace (str | Pattern[str] | None) –

• stop_flag (Future | Event | Future | Event | None) –

• ready_flag (Future | Event | Future | Event | None) –

• vault (Vault | None) –

• memo (object | None) –

• _command (Coroutine[None, None, None] | None) –

kopf.run(*, loop=None, lifecycle=None, indexers=None, registry=None, settings=None, memories=None,
insights=None, identity=None, standalone=None, priority=None, peering_name=None,
liveness_endpoint=None, clusterwide=False, namespaces=(), namespace=None, stop_flag=None,
ready_flag=None, vault=None, memo=None, _command=None)

Run the whole operator synchronously.

If the loop is not specified, the operator runs in the event loop of the current _context_ (by asyncio’s default, the
current thread). See: https://docs.python.org/3/library/asyncio-policy.html for details.

Alternatively, use asyncio.run(kopf.operator(...)) with the same options. It will take care of a new
event loop’s creation and finalization for this call. See: asyncio.run().

Return type
None

Parameters

174 Chapter 46. kopf package

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Pattern
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Pattern
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/asyncio-policy.html
https://docs.python.org/3/library/asyncio-runner.html#asyncio.run
https://docs.python.org/3/library/constants.html#None

Kopf

• loop (AbstractEventLoop | None) –

• lifecycle (LifeCycleFn | None) –

• indexers (OperatorIndexers | None) –

• registry (OperatorRegistry | None) –

• settings (OperatorSettings | None) –

• memories (ResourceMemories | None) –

• insights (Insights | None) –

• identity (Identity | None) –

• standalone (bool | None) –

• priority (int | None) –

• peering_name (str | None) –

• liveness_endpoint (str | None) –

• clusterwide (bool) –

• namespaces (Collection[str | Pattern[str]]) –

• namespace (str | Pattern[str] | None) –

• stop_flag (Future | Event | Future | Event | None) –

• ready_flag (Future | Event | Future | Event | None) –

• vault (Vault | None) –

• memo (object | None) –

• _command (Coroutine[None, None, None] | None) –

kopf.adopt(objs, owner=None, *, forced=False, strict=False, nested=None)
The children should be in the same namespace, named after their parent, and owned by it.

Return type
None

Parameters

• objs (MutableMapping[Any, Any] | _dummy | KubernetesModel |
Iterable[MutableMapping[Any, Any] | _dummy | KubernetesModel]) –

• owner (Body | None) –

• forced (bool) –

• strict (bool) –

• nested (str | Iterable[None | str | Tuple[str, ...] | List[str]] |
None) –

kopf.label(objs, labels=_UNSET.token, *, forced=False, nested=None, force=None)
Apply the labels to the object(s).

Return type
None

Parameters

175

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Pattern
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Pattern
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Kopf

• objs (MutableMapping[Any, Any] | _dummy | KubernetesModel |
Iterable[MutableMapping[Any, Any] | _dummy | KubernetesModel]) –

• labels (Mapping[str, None | str] | _UNSET) –

• forced (bool) –

• nested (str | Iterable[None | str | Tuple[str, ...] | List[str]] |
None) –

• force (bool | None) –

kopf.not_(fn)

Return type
TypeVar(_FnT, Callable[..., bool], Callable[..., bool])

Parameters
fn (_FnT) –

kopf.all_(fns)

Return type
TypeVar(_FnT, Callable[..., bool], Callable[..., bool])

Parameters
fns (Collection[_FnT]) –

kopf.any_(fns)

Return type
TypeVar(_FnT, Callable[..., bool], Callable[..., bool])

Parameters
fns (Collection[_FnT]) –

kopf.none_(fns)

Return type
TypeVar(_FnT, Callable[..., bool], Callable[..., bool])

Parameters
fns (Collection[_FnT]) –

kopf.get_default_lifecycle()

Return type
LifeCycleFn

kopf.set_default_lifecycle(lifecycle)

Return type
None

Parameters
lifecycle (LifeCycleFn | None) –

kopf.build_object_reference(body)
Construct an object reference for the events.

Keep in mind that some fields can be absent: e.g. namespace for cluster resources, or e.g. apiVersion for
kind: Node, etc.

176 Chapter 46. kopf package

https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/constants.html#None

Kopf

Return type
ObjectReference

Parameters
body (Body) –

kopf.build_owner_reference(body, *, controller=True, block_owner_deletion=True)
Construct an owner reference object for the parent-children relationships.

The structure needed to link the children objects to the current object as a parent. See https://kubernetes.io/docs/
concepts/workloads/controllers/garbage-collection/

Keep in mind that some fields can be absent: e.g. namespace for cluster resources, or e.g. apiVersion for
kind: Node, etc.

Return type
OwnerReference

Parameters

• body (Body) –

• controller (bool | None) –

• block_owner_deletion (bool | None) –

kopf.append_owner_reference(objs, owner=None, *, controller=True, block_owner_deletion=True)
Append an owner reference to the resource(s), if it is not yet there.

Note: the owned objects are usually not the one being processed, so the whole body can be modified, no patches
are needed.

Return type
None

Parameters

• objs (MutableMapping[Any, Any] | _dummy | KubernetesModel |
Iterable[MutableMapping[Any, Any] | _dummy | KubernetesModel]) –

• owner (Body | None) –

• controller (bool | None) –

• block_owner_deletion (bool | None) –

kopf.remove_owner_reference(objs, owner=None)
Remove an owner reference to the resource(s), if it is there.

Note: the owned objects are usually not the one being processed, so the whole body can be modified, no patches
are needed.

Return type
None

Parameters

• objs (MutableMapping[Any, Any] | _dummy | KubernetesModel |
Iterable[MutableMapping[Any, Any] | _dummy | KubernetesModel]) –

• owner (Body | None) –

177

https://kubernetes.io/docs/concepts/workloads/controllers/garbage-collection/
https://kubernetes.io/docs/concepts/workloads/controllers/garbage-collection/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Kopf

class kopf.ErrorsMode(value, names=None, *values, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

How arbitrary (non-temporary/non-permanent) exceptions are treated.

IGNORED = 1

TEMPORARY = 2

PERMANENT = 3

exception kopf.AdmissionError(message='', code=500)
Bases: PermanentError

Raised by admission handlers when an API operation under check is bad.

An admission error behaves the same as kopf.PermanentError, but provides admission-specific payload for
the response: a message & a numeric code.

This error type is preferred when selecting only one error to report back to apiservers as the admission review
result – in case multiple handlers are called in one admission request, i.e. when the webhook endpoints are not
mapped to the handler ids (e.g. when configured manually).

Parameters

• message (str | None) –

• code (int | None) –

Return type
None

class kopf.WebhookClientConfigService

Bases: TypedDict

namespace: Optional[str]

name: Optional[str]

path: Optional[str]

port: Optional[int]

class kopf.WebhookClientConfig

Bases: TypedDict

A config of clients (apiservers) to access the webhooks’ server (operators).

This dictionary is put into managed webhook configurations “as is”. The fields & type annotations are only for
hinting.

Kopf additionally modifies the url and the service’s path to inject handler ids as the last path component. This
must be taken into account by custom webhook servers.

caBundle: Optional[str]

url: Optional[str]

service: Optional[WebhookClientConfigService]

178 Chapter 46. kopf package

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

Kopf

class kopf.UserInfo

Bases: TypedDict

username: str

uid: str

groups: List[str]

class kopf.WebhookFn(*args, **kwargs)
Bases: Protocol

A framework-provided function to call when an admission request is received.

The framework provides the actual function. Custom webhook servers must accept the function, invoke it ac-
cordingly on admission requests, wait for the admission response, serialise it and send it back. They do not
implement this function. This protocol only declares the exact signature.

class kopf.WebhookServer(*, addr=None, port=None, path=None, host=None, cadata=None, cafile=None,
cadump=None, context=None, insecure=False, certfile=None, pkeyfile=None,
password=None, extra_sans=(), verify_mode=None, verify_cafile=None,
verify_capath=None, verify_cadata=None)

Bases: WebhookContextManager

A local HTTP/HTTPS endpoint.

Currently, the server is based on aiohttp, but the implementation can change in the future without warning.

This server is also used by specialised tunnels when they need a local endpoint to be tunneled.

• addr, port is where to listen for connections (defaults to localhost and 9443).

• path is the root path for a webhook server (defaults to no root path).

• host is an optional override of the hostname for webhook URLs; if not specified, the addr will be used.

Kubernetes requires HTTPS, so HTTPS is the default mode of the server. This webhook server supports SSL
both for the server certificates and for client certificates (e.g., for authentication) at the same time:

• cadata, cafile is the CA bundle to be passed as a “client config” to the webhook configuration objects,
to be used by clients/apiservers when talking to the webhook server; it is not used in the server itself.

• cadump is a path to save the resulting CA bundle to be used by clients, i.e. apiservers; it can be passed to
curl --cacert ...; if cafile is provided, it contains the same content.

• certfile, pkeyfile define the server’s endpoint certificate; if not specified, a self-signed certificate and
CA will be generated for both addr & host as SANs (but only host for CommonName).

• password is either for decrypting the provided pkeyfile, or for encrypting and decrypting the generated
private key.

• extra_sans are put into the self-signed certificate as SANs (DNS/IP) in addition to the host & addr (in
case some other endpoints exist).

• verify_mode, verify_cafile, verify_capath, verify_cadata will be loaded into the SSL context
for verifying the client certificates when provided and if provided by the clients, i.e. apiservers or curl;
(ssl.SSLContext.verify_mode, ssl.SSLContext.load_verify_locations).

• insecure flag disables HTTPS and runs an HTTP webhook server. This is used in ngrok for a local
endpoint, but can be used for debugging or when the certificate-generating dependencies/extras are not
installed.

Parameters

179

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.verify_mode
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_verify_locations

Kopf

• addr (str | None) –

• port (int | None) –

• path (str | None) –

• host (str | None) –

• cadata (bytes | None) –

• cafile (str | PathLike | None) –

• cadump (str | PathLike | None) –

• context (SSLContext | None) –

• insecure (bool) –

• certfile (str | PathLike | None) –

• pkeyfile (str | PathLike | None) –

• password (str | None) –

• extra_sans (Iterable[str]) –

• verify_mode (VerifyMode | None) –

• verify_cafile (str | PathLike | None) –

• verify_capath (str | PathLike | None) –

• verify_cadata (str | bytes | None) –

DEFAULT_HOST: Optional[str] = None

addr: Optional[str]

port: Optional[int]

path: Optional[str]

host: Optional[str]

cadata: Optional[bytes]

cafile: Union[str, PathLike, None]

cadump: Union[str, PathLike, None]

context: Optional[SSLContext]

insecure: bool

certfile: Union[str, PathLike, None]

pkeyfile: Union[str, PathLike, None]

password: Optional[str]

extra_sans: Iterable[str]

verify_mode: Optional[VerifyMode]

verify_cafile: Union[str, PathLike, None]

180 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.VerifyMode
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/ssl.html#ssl.VerifyMode
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None

Kopf

verify_capath: Union[str, PathLike, None]

verify_cadata: Union[str, bytes, None]

static build_certificate(hostnames, password=None)
Build a self-signed certificate with SANs (subject alternative names).

Returns a tuple of the certificate and its private key (PEM-formatted).

The certificate is “minimally sufficient”, without much of the extra information on the subject besides its
common and alternative names. However, IP addresses are properly recognised and normalised for better
compatibility with strict SSL clients (like apiservers of Kubernetes). The first non-IP hostname becomes
the certificate’s common name – by convention, non-configurable. If no hostnames are found, the first IP
address is used as a fallback. Magic IPs like 0.0.0.0 are excluded.

certbuilder is used as an implementation because it is lightweight: 2.9 MB vs. 8.7 MB for cryptography.
Still, it is too heavy to include as a normal runtime dependency (for 8.8 MB of Kopf itself), so it is only
available as the kopf[dev] extra for development-mode dependencies. This can change in the future
if self-signed certificates become used at runtime (e.g. in production/staging environments or other real
clusters).

Return type
Tuple[bytes, bytes]

Parameters

• hostnames (Collection[str]) –

• password (str | None) –

class kopf.WebhookK3dServer(*, addr=None, port=None, path=None, host=None, cadata=None, cafile=None,
cadump=None, context=None, insecure=False, certfile=None, pkeyfile=None,
password=None, extra_sans=(), verify_mode=None, verify_cafile=None,
verify_capath=None, verify_cadata=None)

Bases: WebhookServer

A tunnel from inside of K3d/K3s to its host where the operator is running.

With this tunnel, a developer can develop the webhooks when fully offline, since all the traffic is local and never
leaves the host machine.

The forwarding is maintained by K3d itself. This tunnel only replaces the endpoints for the Kubernetes webhook
and injects an SSL certificate with proper CN/SANs — to match Kubernetes’s SSL validity expectations.

Parameters

• addr (str | None) –

• port (int | None) –

• path (str | None) –

• host (str | None) –

• cadata (bytes | None) –

• cafile (str | PathLike | None) –

• cadump (str | PathLike | None) –

• context (SSLContext | None) –

• insecure (bool) –

• certfile (str | PathLike | None) –

181

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike

Kopf

• pkeyfile (str | PathLike | None) –

• password (str | None) –

• extra_sans (Iterable[str]) –

• verify_mode (VerifyMode | None) –

• verify_cafile (str | PathLike | None) –

• verify_capath (str | PathLike | None) –

• verify_cadata (str | bytes | None) –

DEFAULT_HOST: Optional[str] = 'host.k3d.internal'

class kopf.WebhookMinikubeServer(*, addr=None, port=None, path=None, host=None, cadata=None,
cafile=None, cadump=None, context=None, insecure=False,
certfile=None, pkeyfile=None, password=None, extra_sans=(),
verify_mode=None, verify_cafile=None, verify_capath=None,
verify_cadata=None)

Bases: WebhookServer

A tunnel from inside of Minikube to its host where the operator is running.

With this tunnel, a developer can develop the webhooks when fully offline, since all the traffic is local and never
leaves the host machine.

The forwarding is maintained by Minikube itself. This tunnel only replaces the endpoints for the Kubernetes
webhook and injects an SSL certificate with proper CN/SANs — to match Kubernetes’s SSL validity expecta-
tions.

Parameters

• addr (str | None) –

• port (int | None) –

• path (str | None) –

• host (str | None) –

• cadata (bytes | None) –

• cafile (str | PathLike | None) –

• cadump (str | PathLike | None) –

• context (SSLContext | None) –

• insecure (bool) –

• certfile (str | PathLike | None) –

• pkeyfile (str | PathLike | None) –

• password (str | None) –

• extra_sans (Iterable[str]) –

• verify_mode (VerifyMode | None) –

• verify_cafile (str | PathLike | None) –

• verify_capath (str | PathLike | None) –

• verify_cadata (str | bytes | None) –

182 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.VerifyMode
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.VerifyMode
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

Kopf

DEFAULT_HOST: Optional[str] = 'host.minikube.internal'

class kopf.WebhookNgrokTunnel(*, addr=None, port=None, path=None, token=None, region=None,
binary=None)

Bases: WebhookContextManager

Tunnel admission webhook request via an external tunnel: ngrok.

addr, port, and path have the same meaning as in kopf.WebhookServer: where to listen for connections
locally. Ngrok then tunnels this endpoint remotely with.

Mind that the ngrok webhook tunnel runs the local webhook server in an insecure (HTTP) mode. For secure
(HTTPS) mode, a paid subscription and properly issued certificates are needed. This goes beyond Kopf’s scope.
If needed, implement your own ngrok tunnel.

Besides, ngrok tunnel does not report any CA to the webhook client configs. It is expected that the default trust
chain is sufficient for ngrok’s certs.

token can be used for paid subscriptions, which lifts some limitations. Otherwise, the free plan has a limit of
40 requests per minute (this should be enough for local development).

binary, if set, will use the specified ngrok binary path; otherwise, pyngrok downloads the binary at runtime
(not recommended).

Warning: The public URL is not properly protected and a malicious user can send requests to a locally
running operator. If the handlers only process the data and make no side effects, this should be fine.

Despite ngrok provides basic auth (“username:password”), Kubernetes does not permit this information in
the URLs.

Ngrok partially “protects” the URLS by assigning them random hostnames. Additionally, you can add random
paths. However, this is not “security”, only a bit of safety for a short time (enough for development runs).

Parameters

• addr (str | None) –

• port (int | None) –

• path (str | None) –

• token (str | None) –

• region (str | None) –

• binary (str | PathLike | None) –

addr: Optional[str]

port: Optional[int]

path: Optional[str]

token: Optional[str]

region: Optional[str]

binary: Union[str, PathLike, None]

183

https://ngrok.com/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None

Kopf

class kopf.WebhookAutoServer(*, addr=None, port=None, path=None, host=None, cadata=None,
cafile=None, cadump=None, context=None, insecure=False, certfile=None,
pkeyfile=None, password=None, extra_sans=(), verify_mode=None,
verify_cafile=None, verify_capath=None, verify_cadata=None)

Bases: ClusterDetector, WebhookServer

A locally listening webserver which attempts to guess its proper hostname.

The choice is happening between supported webhook servers only (K3d/K3d and Minikube at the moment). In
all other cases, a regular local server is started without hostname overrides.

If automatic tunneling is possible, consider WebhookAutoTunnel instead.

Parameters

• addr (str | None) –

• port (int | None) –

• path (str | None) –

• host (str | None) –

• cadata (bytes | None) –

• cafile (str | PathLike | None) –

• cadump (str | PathLike | None) –

• context (SSLContext | None) –

• insecure (bool) –

• certfile (str | PathLike | None) –

• pkeyfile (str | PathLike | None) –

• password (str | None) –

• extra_sans (Iterable[str]) –

• verify_mode (VerifyMode | None) –

• verify_cafile (str | PathLike | None) –

• verify_capath (str | PathLike | None) –

• verify_cadata (str | bytes | None) –

class kopf.WebhookAutoTunnel(*, addr=None, port=None, path=None)
Bases: ClusterDetector, WebhookContextManager

The same as WebhookAutoServer, but with possible tunneling.

Generally, tunneling gives more possibilities to run in any environment, but it must not happen without a permis-
sion from the developers, and is not possible if running in a completely isolated/local/CI/CD cluster. Therefore,
developers should activated automatic setup explicitly.

If automatic tunneling is prohibited or impossible, use WebhookAutoServer.

Note: Automatic server/tunnel detection is highly limited in configuration and provides only the most common
options of all servers & tunners: specifically, listening addr:port/path. All other options are specific to their
servers/tunnels and the auto-guessing logic cannot use/accept/pass them.

184 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.VerifyMode
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

Kopf

Parameters

• addr (str | None) –

• port (int | None) –

• path (str | None) –

addr: Optional[str]

port: Optional[int]

path: Optional[str]

exception kopf.PermanentError

Bases: Exception

A fatal handler error, the retries are useless.

exception kopf.TemporaryError(_TemporaryError__msg=None, delay=60)
Bases: Exception

A potentially recoverable error, should be retried.

Parameters

• _TemporaryError__msg (str | None) –

• delay (float | None) –

Return type
None

exception kopf.HandlerTimeoutError

Bases: PermanentError

An error for the handler’s timeout (if set).

exception kopf.HandlerRetriesError

Bases: PermanentError

An error for the handler’s retries exceeded (if set).

class kopf.OperatorRegistry

Bases: object

A global registry is used for handling of multiple resources & activities.

It is usually populated by the @kopf.on... decorators, but can also be explicitly created and used in the em-
bedded operators.

kopf.get_default_registry()

Get the default registry to be used by the decorators and the reactor unless the explicit registry is provided to
them.

Return type
OperatorRegistry

185

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

Kopf

kopf.set_default_registry(registry)
Set the default registry to be used by the decorators and the reactor unless the explicit registry is provided to
them.

Return type
None

Parameters
registry (OperatorRegistry) –

class kopf.OperatorSettings(process=<factory>, posting=<factory>, peering=<factory>,
watching=<factory>, batching=<factory>, scanning=<factory>,
admission=<factory>, execution=<factory>, background=<factory>,
networking=<factory>, persistence=<factory>)

Bases: object

Parameters

• process (ProcessSettings) –

• posting (PostingSettings) –

• peering (PeeringSettings) –

• watching (WatchingSettings) –

• batching (BatchingSettings) –

• scanning (ScanningSettings) –

• admission (AdmissionSettings) –

• execution (ExecutionSettings) –

• background (BackgroundSettings) –

• networking (NetworkingSettings) –

• persistence (PersistenceSettings) –

process: ProcessSettings

posting: PostingSettings

peering: PeeringSettings

watching: WatchingSettings

batching: BatchingSettings

scanning: ScanningSettings

admission: AdmissionSettings

execution: ExecutionSettings

background: BackgroundSettings

networking: NetworkingSettings

persistence: PersistenceSettings

186 Chapter 46. kopf package

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

Kopf

class kopf.DiffBaseStorage

Bases: StorageKeyMarkingConvention, StorageStanzaCleaner

Store the base essence for diff calculations, i.e. last handled state.

The “essence” is a snapshot of meaningful fields, which must be tracked to identify the actual changes on the
object (or absence of such).

Used in the handling routines to check if there were significant changes (i.e. not the internal and system changes,
like the uids, links, etc), and to get the exact per-field diffs for the specific handler functions.

Conceptually similar to how kubectl apply stores the applied state on any object, and then uses
that for the patch calculation: https://kubernetes.io/docs/concepts/overview/object-management-kubectl/
declarative-config/

build(*, body, extra_fields=None)
Extract only the relevant fields for the state comparisons.

The framework ignores all the system fields (mostly from metadata) and the status senza completely. Except
for some well-known and useful metadata, such as labels and annotations (except for sure garbage).

A special set of fields can be provided even if they are supposed to be removed. This is used, for example,
for handlers which react to changes in the specific fields in the status stanza, while the rest of the status
stanza is removed.

It is generally not a good idea to override this method in custom stores, unless a different definition of an
object’s essence is needed.

Return type
BodyEssence

Parameters

• body (Body) –

• extra_fields (Iterable[None | str | Tuple[str, ...] | List[str]] |
None) –

abstract fetch(*, body)

Return type
Optional[BodyEssence]

Parameters
body (Body) –

abstract store(*, body, patch, essence)

Return type
None

Parameters

• body (Body) –

• patch (Patch) –

• essence (BodyEssence) –

class kopf.AnnotationsDiffBaseStorage(*, prefix='kopf.zalando.org', key='last-handled-configuration',
v1=True)

Bases: StorageKeyFormingConvention, DiffBaseStorage

Parameters

187

https://kubernetes.io/docs/concepts/overview/object-management-kubectl/declarative-config/
https://kubernetes.io/docs/concepts/overview/object-management-kubectl/declarative-config/
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

Kopf

• prefix (str) –

• key (str) –

• v1 (bool) –

build(*, body, extra_fields=None)
Extract only the relevant fields for the state comparisons.

The framework ignores all the system fields (mostly from metadata) and the status senza completely. Except
for some well-known and useful metadata, such as labels and annotations (except for sure garbage).

A special set of fields can be provided even if they are supposed to be removed. This is used, for example,
for handlers which react to changes in the specific fields in the status stanza, while the rest of the status
stanza is removed.

It is generally not a good idea to override this method in custom stores, unless a different definition of an
object’s essence is needed.

Return type
BodyEssence

Parameters

• body (Body) –

• extra_fields (Iterable[None | str | Tuple[str, ...] | List[str]] |
None) –

fetch(*, body)

Return type
Optional[BodyEssence]

Parameters
body (Body) –

store(*, body, patch, essence)

Return type
None

Parameters

• body (Body) –

• patch (Patch) –

• essence (BodyEssence) –

class kopf.StatusDiffBaseStorage(*, name='kopf', field='status.{name}.last-handled-configuration')
Bases: DiffBaseStorage

Parameters

• name (str) –

• field (None | str | Tuple[str, ...] | List[str]) –

property field: Tuple[str, ...]

188 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str

Kopf

build(*, body, extra_fields=None)
Extract only the relevant fields for the state comparisons.

The framework ignores all the system fields (mostly from metadata) and the status senza completely. Except
for some well-known and useful metadata, such as labels and annotations (except for sure garbage).

A special set of fields can be provided even if they are supposed to be removed. This is used, for example,
for handlers which react to changes in the specific fields in the status stanza, while the rest of the status
stanza is removed.

It is generally not a good idea to override this method in custom stores, unless a different definition of an
object’s essence is needed.

Return type
BodyEssence

Parameters

• body (Body) –

• extra_fields (Iterable[None | str | Tuple[str, ...] | List[str]] |
None) –

fetch(*, body)

Return type
Optional[BodyEssence]

Parameters
body (Body) –

store(*, body, patch, essence)

Return type
None

Parameters

• body (Body) –

• patch (Patch) –

• essence (BodyEssence) –

class kopf.MultiDiffBaseStorage(storages)
Bases: DiffBaseStorage

Parameters
storages (Collection[DiffBaseStorage]) –

build(*, body, extra_fields=None)
Extract only the relevant fields for the state comparisons.

The framework ignores all the system fields (mostly from metadata) and the status senza completely. Except
for some well-known and useful metadata, such as labels and annotations (except for sure garbage).

A special set of fields can be provided even if they are supposed to be removed. This is used, for example,
for handlers which react to changes in the specific fields in the status stanza, while the rest of the status
stanza is removed.

It is generally not a good idea to override this method in custom stores, unless a different definition of an
object’s essence is needed.

189

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Collection

Kopf

Return type
BodyEssence

Parameters

• body (Body) –

• extra_fields (Iterable[None | str | Tuple[str, ...] | List[str]] |
None) –

fetch(*, body)

Return type
Optional[BodyEssence]

Parameters
body (Body) –

store(*, body, patch, essence)

Return type
None

Parameters

• body (Body) –

• patch (Patch) –

• essence (BodyEssence) –

class kopf.ProgressRecord

Bases: TypedDict

A single record stored for persistence of a single handler.

started: Optional[str]

stopped: Optional[str]

delayed: Optional[str]

purpose: Optional[str]

retries: Optional[int]

success: Optional[bool]

failure: Optional[bool]

message: Optional[str]

subrefs: Optional[Collection[NewType(HandlerId, str)]]

class kopf.ProgressStorage

Bases: StorageStanzaCleaner

Base class and an interface for all persistent states.

The state is persisted strict per-handler, not for all handlers at once: to support overlapping operators (assuming
different handler ids) storing their state on the same fields of the resource (e.g. state.kopf).

This also ensures that no extra logic for state merges will be needed: the handler states are atomic (i.e. state
fields are not used separately) but independent: i.e. handlers should be persisted on their own, unrelated to other
handlers; i.e. never combined to other atomic structures.

190 Chapter 46. kopf package

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.NewType
https://docs.python.org/3/library/stdtypes.html#str

Kopf

If combining is still needed with performance optimization in mind (e.g. for relational/transactional databases),
the keys can be cached in memory for short time, and flush() can be overridden to actually store them.

abstract fetch(*, key, body)

Return type
Optional[ProgressRecord]

Parameters

• key (HandlerId) –

• body (Body) –

abstract store(*, key, record, body, patch)

Return type
None

Parameters

• key (HandlerId) –

• record (ProgressRecord) –

• body (Body) –

• patch (Patch) –

abstract purge(*, key, body, patch)

Return type
None

Parameters

• key (HandlerId) –

• body (Body) –

• patch (Patch) –

abstract touch(*, body, patch, value)

Return type
None

Parameters

• body (Body) –

• patch (Patch) –

• value (str | None) –

abstract clear(*, essence)

Return type
BodyEssence

Parameters
essence (BodyEssence) –

flush()

Return type
None

191

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Kopf

class kopf.AnnotationsProgressStorage(*, prefix='kopf.zalando.org', verbose=False,
touch_key='touch-dummy', v1=True)

Bases: StorageKeyFormingConvention, StorageKeyMarkingConvention, ProgressStorage

State storage in .metadata.annotations with JSON-serialised content.

An example without a prefix:

An example with a prefix:

For the annotations’ naming conventions, hashing, and V1 & V2 differences, see AnnotationsNamingMixin.

Parameters

• prefix (str) –

• verbose (bool) –

• touch_key (str) –

• v1 (bool) –

fetch(*, key, body)

Return type
Optional[ProgressRecord]

Parameters

• key (HandlerId) –

• body (Body) –

store(*, key, record, body, patch)

Return type
None

Parameters

• key (HandlerId) –

• record (ProgressRecord) –

• body (Body) –

• patch (Patch) –

purge(*, key, body, patch)

Return type
None

Parameters

• key (HandlerId) –

• body (Body) –

• patch (Patch) –

touch(*, body, patch, value)

Return type
None

Parameters

192 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Kopf

• body (Body) –

• patch (Patch) –

• value (str | None) –

clear(*, essence)

Return type
BodyEssence

Parameters
essence (BodyEssence) –

class kopf.StatusProgressStorage(*, name='kopf', field='status.{name}.progress',
touch_field='status.{name}.dummy')

Bases: ProgressStorage

State storage in .status stanza with deep structure.

The structure is this:

Parameters

• name (str) –

• field (None | str | Tuple[str, ...] | List[str]) –

• touch_field (None | str | Tuple[str, ...] | List[str]) –

property field: Tuple[str, ...]

property touch_field: Tuple[str, ...]

fetch(*, key, body)

Return type
Optional[ProgressRecord]

Parameters

• key (HandlerId) –

• body (Body) –

store(*, key, record, body, patch)

Return type
None

Parameters

• key (HandlerId) –

• record (ProgressRecord) –

• body (Body) –

• patch (Patch) –

purge(*, key, body, patch)

Return type
None

Parameters

193

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Kopf

• key (HandlerId) –

• body (Body) –

• patch (Patch) –

touch(*, body, patch, value)

Return type
None

Parameters

• body (Body) –

• patch (Patch) –

• value (str | None) –

clear(*, essence)

Return type
BodyEssence

Parameters
essence (BodyEssence) –

class kopf.MultiProgressStorage(storages)
Bases: ProgressStorage

Parameters
storages (Collection[ProgressStorage]) –

fetch(*, key, body)

Return type
Optional[ProgressRecord]

Parameters

• key (HandlerId) –

• body (Body) –

store(*, key, record, body, patch)

Return type
None

Parameters

• key (HandlerId) –

• record (ProgressRecord) –

• body (Body) –

• patch (Patch) –

purge(*, key, body, patch)

Return type
None

Parameters

• key (HandlerId) –

194 Chapter 46. kopf package

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Kopf

• body (Body) –

• patch (Patch) –

touch(*, body, patch, value)

Return type
None

Parameters

• body (Body) –

• patch (Patch) –

• value (str | None) –

clear(*, essence)

Return type
BodyEssence

Parameters
essence (BodyEssence) –

class kopf.SmartProgressStorage(*, name='kopf', field='status.{name}.progress', touch_key='touch-dummy',
touch_field='status.{name}.dummy', prefix='kopf.zalando.org', v1=True,
verbose=False)

Bases: MultiProgressStorage

Parameters

• name (str) –

• field (None | str | Tuple[str, ...] | List[str]) –

• touch_key (str) –

• touch_field (None | str | Tuple[str, ...] | List[str]) –

• prefix (str) –

• v1 (bool) –

• verbose (bool) –

class kopf.RawEvent

Bases: TypedDict

type: Literal[None, 'ADDED', 'MODIFIED', 'DELETED']

object: RawBody

class kopf.RawBody

Bases: TypedDict

apiVersion: str

kind: str

metadata: RawMeta

spec: Mapping[str, Any]

195

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Kopf

status: Mapping[str, Any]

class kopf.Status(_Status__src)
Bases: MappingView[str, Any]

Parameters
_Status__src (Body) –

class kopf.Spec(_Spec__src)
Bases: MappingView[str, Any]

Parameters
_Spec__src (Body) –

class kopf.Meta(_Meta__src)
Bases: MappingView[str, Any]

Parameters
_Meta__src (Body) –

property labels: Mapping[str, str]

property annotations: Mapping[str, str]

property uid: str | None

property name: str | None

property namespace: NamespaceName | None

property creation_timestamp: str | None

property deletion_timestamp: str | None

class kopf.Body(_Body__src)
Bases: ReplaceableMappingView[str, Any]

Parameters
_Body__src (Mapping[str, Any]) –

property metadata: Meta

property meta: Meta

property spec: Spec

property status: Status

class kopf.BodyEssence

Bases: TypedDict

metadata: MetaEssence

spec: Mapping[str, Any]

status: Mapping[str, Any]

class kopf.ObjectReference

Bases: TypedDict

apiVersion: str

196 Chapter 46. kopf package

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

Kopf

kind: str

namespace: Optional[str]

name: str

uid: str

class kopf.OwnerReference

Bases: TypedDict

controller: bool

blockOwnerDeletion: bool

apiVersion: str

kind: str

name: str

uid: str

class kopf.Memo

Bases: Dict[Any, Any]

A container to hold arbitrary keys-values assigned by operator developers.

It is used in the memo kwarg to all resource handlers, isolated per individual resource object (not the resource
kind).

The values can be accessed either as dictionary keys (the memo is a dict under the hood) or as object attributes
(except for methods of dict).

See more in In-memory containers.

>>> memo = Memo()

>>> memo.f1 = 100
>>> memo['f1']
... 100

>>> memo['f2'] = 200
>>> memo.f2
... 200

>>> set(memo.keys())
... {'f1', 'f2'}

class kopf.Index

Bases: Mapping[_K, Store[_V]], Generic[_K, _V]

A mapping of index keys to collections of values indexed under those keys.

A single index is identified by a handler id and is populated by values usually from a single indexing function
(the @kopf.index() decorator).

Note: This class is only an abstract interface of an index. The actual implementation is in indexing.Index.

197

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Generic

Kopf

class kopf.Store

Bases: Collection[_V], Generic[_V]

A collection of all values under a single unique index key.

Multiple objects can yield the same keys, so all their values are accumulated into collections. When an object is
deleted or stops matching the filters, all associated values are discarded.

The order of values is not guaranteed.

The values are not deduplicated, so duplicates are possible if multiple objects return the same values from their
indexing functions.

Note: This class is only an abstract interface of an indexed store. The actual implementation is in indexing.
Store.

class kopf.ObjectLogger(*, body, settings)
Bases: LoggerAdapter

A logger/adapter to carry the object identifiers for formatting.

The identifiers are then used both for formatting the per-object messages in ObjectPrefixingFormatter, and
when posting the per-object k8s-events.

Constructed in event handling of each individual object.

The internal structure is made the same as an object reference in K8s API, but can change over time to anything
needed for our internal purposes. However, as little information should be carried as possible, and the informa-
tion should be protected against the object modification (e.g. in case of background posting via the queue; see
K8sPoster).

Parameters

• body (Body) –

• settings (OperatorSettings) –

process(msg, kwargs)
Process the logging message and keyword arguments passed in to a logging call to insert contextual infor-
mation. You can either manipulate the message itself, the keyword args or both. Return the message and
kwargs modified (or not) to suit your needs.

Normally, you’ll only need to override this one method in a LoggerAdapter subclass for your specific needs.

Return type
Tuple[str, MutableMapping[str, Any]]

Parameters

• msg (str) –

• kwargs (MutableMapping[str, Any]) –

class kopf.LocalObjectLogger(*, body, settings)
Bases: ObjectLogger

The same as ObjectLogger, but does not post the messages as k8s-events.

Used in the resource-watching handlers to log the handler’s invocation successes/failures without overloading
K8s with excessively many k8s-events.

This class is used internally only and is not exposed publicly in any way.

198 Chapter 46. kopf package

https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Kopf

Parameters

• body (Body) –

• settings (OperatorSettings) –

log(*args, **kwargs)
Delegate a log call to the underlying logger, after adding contextual information from this adapter instance.

Return type
None

Parameters

• args (Any) –

• kwargs (Any) –

class kopf.Diff(_Diff__items)
Bases: Sequence[DiffItem]

Parameters
_Diff__items (Iterable[DiffItem]) –

class kopf.DiffItem(operation, field, old, new)
Bases: NamedTuple

Parameters

• operation (DiffOperation) –

• field (Tuple[str, ...]) –

• old (Any) –

• new (Any) –

operation: DiffOperation

Alias for field number 0

field: Tuple[str, ...]

Alias for field number 1

old: Any

Alias for field number 2

new: Any

Alias for field number 3

property op: DiffOperation

class kopf.DiffOperation(value, names=None, *values, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: str, Enum

ADD = 'add'

CHANGE = 'change'

REMOVE = 'remove'

199

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum

Kopf

class kopf.Reason(value, names=None, *values, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: str, Enum

CREATE = 'create'

UPDATE = 'update'

DELETE = 'delete'

RESUME = 'resume'

NOOP = 'noop'

FREE = 'free'

GONE = 'gone'

class kopf.Patch(_Patch__src=None, body=None)
Bases: Dict[str, Any]

Parameters

• _Patch__src (MutableMapping[str, Any] | None) –

• body (RawBody | None) –

property metadata: MetaPatch

property meta: MetaPatch

property spec: SpecPatch

property status: StatusPatch

as_json_patch()

Return type
List[JSONPatchItem]

class kopf.DaemonStoppingReason(value, names=None, *values, module=None, qualname=None, type=None,
start=1, boundary=None)

Bases: Flag

A reason or reasons of daemon being terminated.

Daemons are signalled to exit usually for two reasons: the operator itself is exiting or restarting, so all daemons
of all resources must stop; or the individual resource was deleted, but the operator continues running.

No matter the reason, the daemons must exit, so one and only one stop-flag is used. Some daemons can check
the reason of exiting if it is important.

There can be multiple reasons combined (in rare cases, all of them).

DONE = 1

FILTERS_MISMATCH = 2

RESOURCE_DELETED = 4

OPERATOR_PAUSING = 8

200 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/enum.html#enum.Flag

Kopf

OPERATOR_EXITING = 16

DAEMON_SIGNALLED = 32

DAEMON_CANCELLED = 64

DAEMON_ABANDONED = 128

class kopf.Resource(group, version, plural, kind=None, singular=None, shortcuts=frozenset({}),
categories=frozenset({}), subresources=frozenset({}), namespaced=None, preferred=True,
verbs=frozenset({}))

Bases: object

A reference to a very specific custom or built-in resource kind.

It is used to form the K8s API URLs. Generally, K8s API only needs an API group, an API version, and a plural
name of the resource. All other names are remembered to match against resource selectors, for logging, and for
informational purposes.

Parameters

• group (str) –

• version (str) –

• plural (str) –

• kind (str | None) –

• singular (str | None) –

• shortcuts (FrozenSet[str]) –

• categories (FrozenSet[str]) –

• subresources (FrozenSet[str]) –

• namespaced (bool | None) –

• preferred (bool) –

• verbs (FrozenSet[str]) –

group: str

The resource’s API group; e.g. "kopf.dev", "apps", "batch". For Core v1 API resources, an empty
string: "".

version: str

The resource’s API version; e.g. "v1", "v1beta1", etc.

plural: str

The resource’s plural name; e.g. "pods", "kopfexamples". It is used as an API endpoint, together with
API group & version.

kind: Optional[str] = None

The resource’s kind (as in YAML files); e.g. "Pod", "KopfExample".

singular: Optional[str] = None

The resource’s singular name; e.g. "pod", "kopfexample".

shortcuts: FrozenSet[str] = frozenset({})

The resource’s short names; e.g. {"po"}, {"kex", "kexes"}.

201

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str

Kopf

categories: FrozenSet[str] = frozenset({})

The resource’s categories, to which the resource belongs; e.g. {"all"}.

subresources: FrozenSet[str] = frozenset({})

The resource’s subresources, if defined; e.g. {"status", "scale"}.

namespaced: Optional[bool] = None

Whether the resource is namespaced (True) or cluster-scoped (False).

preferred: bool = True

Whether the resource belong to a “preferred” API version. Only “preferred” resources are served when the
version is not specified.

verbs: FrozenSet[str] = frozenset({})

All available verbs for the resource, as supported by K8s API; e.g., {"list", "watch", "create",
"update", "delete", "patch"}. Note that it is not the same as all verbs permitted by RBAC.

get_url(*, server=None, namespace=None, name=None, subresource=None, params=None)
Build a URL to be used with K8s API.

If the namespace is not set, a cluster-wide URL is returned. For cluster-scoped resources, the namespace
is ignored.

If the name is not set, the URL for the resource list is returned. Otherwise (if set), the URL for the individual
resource is returned.

If subresource is set, that subresource’s URL is returned, regardless of whether such a subresource is known
or not.

Params go to the query parameters (?param1=value1¶m2=value2...).

Return type
str

Parameters

• server (str | None) –

• namespace (NamespaceName | None) –

• name (str | None) –

• subresource (str | None) –

• params (Mapping[str, str] | None) –

46.1 Submodules

46.1.1 kopf.cli module

class kopf.cli.CLIControls(ready_flag=None, stop_flag=None, vault=None, registry=None, settings=None,
loop=None)

Bases: object

KopfRunner controls, which are impossible to pass via CLI.

Parameters

• ready_flag (Future | Event | Future | Event | None) –

202 Chapter 46. kopf package

https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/threading.html#threading.Event

Kopf

• stop_flag (Future | Event | Future | Event | None) –

• vault (Vault | None) –

• registry (OperatorRegistry | None) –

• settings (OperatorSettings | None) –

• loop (AbstractEventLoop | None) –

ready_flag: Union[Future, Event, Future, Event, None] = None

stop_flag: Union[Future, Event, Future, Event, None] = None

vault: Optional[Vault] = None

registry: Optional[OperatorRegistry] = None

settings: Optional[OperatorSettings] = None

loop: Optional[AbstractEventLoop] = None

class kopf.cli.LogFormatParamType

Bases: Choice

convert(value, param, ctx)
Convert the value to the correct type. This is not called if the value is None (the missing value).

This must accept string values from the command line, as well as values that are already the correct type.
It may also convert other compatible types.

The param and ctx arguments may be None in certain situations, such as when converting prompt input.

If the value cannot be converted, call fail() with a descriptive message.

Parameters

• value (Any) – The value to convert.

• param (Any) – The parameter that is using this type to convert its value. May be None.

• ctx (Any) – The current context that arrived at this value. May be None.

Return type
LogFormat

kopf.cli.logging_options(fn)
A decorator to configure logging in all commands the same way.

Return type
Callable[..., Any]

Parameters
fn (Callable[[...], Any]) –

46.1. Submodules 203

https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any

Kopf

46.1.2 kopf.on module

The decorators for the event handlers. Usually used as:

import kopf

@kopf.on.create('kopfexamples')
def creation_handler(**kwargs):

pass

This module is a part of the framework’s public interface.

kopf.on.startup(*, id=None, param=None, errors=None, timeout=None, retries=None, backoff=None,
registry=None)

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• registry (OperatorRegistry | None) –

kopf.on.cleanup(*, id=None, param=None, errors=None, timeout=None, retries=None, backoff=None,
registry=None)

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• registry (OperatorRegistry | None) –

kopf.on.login(*, id=None, param=None, errors=None, timeout=None, retries=None, backoff=None,
registry=None)

@kopf.on.login() handler for custom (re-)authentication.

204 Chapter 46. kopf package

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Kopf

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• registry (OperatorRegistry | None) –

kopf.on.probe(*, id=None, param=None, errors=None, timeout=None, retries=None, backoff=None,
registry=None)

@kopf.on.probe() handler for arbitrary liveness metrics.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• registry (OperatorRegistry | None) –

kopf.on.validate(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, operation=None, operations=None,
subresource=None, persistent=None, side_effects=None, ignore_failures=None, labels=None,
annotations=None, when=None, field=None, value=None, registry=None)

@kopf.on.validate() handler for validating admission webhooks.

Return type
Callable[[Callable[..., Optional[Coroutine[None, None, None]]]], Callable[...,
Optional[Coroutine[None, None, None]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

46.1. Submodules 205

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Kopf

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• operation (Literal['CREATE', 'UPDATE', 'DELETE', 'CONNECT'] | None) –

• operations (Collection[Literal['CREATE', 'UPDATE', 'DELETE', 'CONNECT']] |
None) –

• subresource (str | None) –

• persistent (bool | None) –

• side_effects (bool | None) –

• ignore_failures (bool | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.on.mutate(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, operation=None, operations=None, subresource=None,
persistent=None, side_effects=None, ignore_failures=None, labels=None, annotations=None,
when=None, field=None, value=None, registry=None)

@kopf.on.mutate() handler for mutating admission webhooks.

Return type
Callable[[Callable[..., Optional[Coroutine[None, None, None]]]], Callable[...,
Optional[Coroutine[None, None, None]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

206 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Kopf

• plural (str | None) –

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• operation (Literal['CREATE', 'UPDATE', 'DELETE', 'CONNECT'] | None) –

• operations (Collection[Literal['CREATE', 'UPDATE', 'DELETE', 'CONNECT']] |
None) –

• subresource (str | None) –

• persistent (bool | None) –

• side_effects (bool | None) –

• ignore_failures (bool | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.on.resume(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None,
backoff=None, deleted=None, labels=None, annotations=None, when=None, field=None,
value=None, registry=None)

@kopf.on.resume() handler for the object resuming on operator (re)start.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

46.1. Submodules 207

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Kopf

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• deleted (bool | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.on.create(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None,
backoff=None, labels=None, annotations=None, when=None, field=None, value=None,
registry=None)

@kopf.on.create() handler for the object creation.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

208 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Kopf

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.on.update(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None,
backoff=None, labels=None, annotations=None, when=None, field=None, value=None,
old=None, new=None, registry=None)

@kopf.on.update() handler for the object update or change.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

46.1. Submodules 209

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Kopf

• backoff (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• old (None | Any | MetaFilterToken | Callable[[...], bool]) –

• new (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.on.delete(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None,
backoff=None, optional=None, labels=None, annotations=None, when=None, field=None,
value=None, registry=None)

@kopf.on.delete() handler for the object deletion.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• optional (bool | None) –

210 Chapter 46. kopf package

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Kopf

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.on.field(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None,
backoff=None, labels=None, annotations=None, when=None, field, value=None, old=None,
new=None, registry=None)

@kopf.on.field() handler for the individual field changes.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

46.1. Submodules 211

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool

Kopf

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• old (None | Any | MetaFilterToken | Callable[[...], bool]) –

• new (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.on.index(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None,
backoff=None, labels=None, annotations=None, when=None, field=None, value=None,
registry=None)

@kopf.index() handler for the indexing callbacks.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

212 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool

Kopf

• registry (OperatorRegistry | None) –

kopf.on.event(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, labels=None, annotations=None, when=None,
field=None, value=None, registry=None)

@kopf.on.event() handler for the silent spies on the events.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.on.daemon(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None,
backoff=None, initial_delay=None, cancellation_backoff=None, cancellation_timeout=None,
cancellation_polling=None, labels=None, annotations=None, when=None, field=None,
value=None, registry=None)

@kopf.daemon() decorator for the background threads/tasks.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

46.1. Submodules 213

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object

Kopf

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• initial_delay (float | None) –

• cancellation_backoff (float | None) –

• cancellation_timeout (float | None) –

• cancellation_polling (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.on.timer(__group_or_groupversion_or_name=None, __version_or_name=None, __name=None, *,
group=None, version=None, kind=None, plural=None, singular=None, shortcut=None,
category=None, id=None, param=None, errors=None, timeout=None, retries=None,
backoff=None, interval=None, initial_delay=None, sharp=None, idle=None, labels=None,
annotations=None, when=None, field=None, value=None, registry=None)

@kopf.timer() handler for the regular events.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

214 Chapter 46. kopf package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object

Kopf

Parameters

• __group_or_groupversion_or_name (str | Marker | None) –

• __version_or_name (str | Marker | None) –

• __name (str | Marker | None) –

• group (str | None) –

• version (str | None) –

• kind (str | None) –

• plural (str | None) –

• singular (str | None) –

• shortcut (str | None) –

• category (str | None) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• interval (float | None) –

• initial_delay (float | None) –

• sharp (bool | None) –

• idle (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• registry (OperatorRegistry | None) –

kopf.on.subhandler(*, id=None, param=None, errors=None, timeout=None, retries=None, backoff=None,
labels=None, annotations=None, when=None, field=None, value=None, old=None,
new=None)

@kopf.subhandler() decorator for the dynamically generated sub-handlers.

Can be used only inside of the handler function. It is efficiently a syntax sugar to look like all other handlers:

@kopf.on.create('kopfexamples')
def create(*, spec, **kwargs):

for task in spec.get('tasks', []):
(continues on next page)

46.1. Submodules 215

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool

Kopf

(continued from previous page)

@kopf.subhandler(id=f'task_{task}')
def create_task(*, spec, task=task, **kwargs):

pass

In this example, having spec.tasks set to [abc, def], this will create the following handlers: create, create/
task_abc, create/task_def.

The parent handler is not considered as finished if there are unfinished sub-handlers left. Since the sub-handlers
will be executed in the regular reactor and lifecycle, with multiple low-level events (one per iteration), the parent
handler will also be executed multiple times, and is expected to produce the same (or at least predictable) set of
sub-handlers. In addition, keep its logic idempotent (not failing on the repeated calls).

Note: task=task is needed to freeze the closure variable, so that every create function will have its own value,
not the latest in the for-cycle.

Return type
Callable[[Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]], Callable[..., Union[object, None, Coroutine[None, None,
Optional[object]]]]]

Parameters

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

• field (None | str | Tuple[str, ...] | List[str]) –

• value (None | Any | MetaFilterToken | Callable[[...], bool]) –

• old (None | Any | MetaFilterToken | Callable[[...], bool]) –

• new (None | Any | MetaFilterToken | Callable[[...], bool]) –

kopf.on.register(fn, *, id=None, param=None, errors=None, timeout=None, retries=None, backoff=None,
labels=None, annotations=None, when=None)

Register a function as a sub-handler of the currently executed handler.

Example:

@kopf.on.create('kopfexamples')
def create_it(spec, **kwargs):

for task in spec.get('tasks', []):

(continues on next page)

216 Chapter 46. kopf package

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool

Kopf

(continued from previous page)

def create_single_task(task=task, **_):
pass

kopf.register(id=task, fn=create_single_task)

This is efficiently an equivalent for:

@kopf.on.create('kopfexamples')
def create_it(spec, **kwargs):

for task in spec.get('tasks', []):

@kopf.subhandler(id=task)
def create_single_task(task=task, **_):

pass

Return type
Callable[..., Union[object, None, Coroutine[None, None, Optional[object]]]]

Parameters

• fn (Callable[[...], object | None | Coroutine[None, None, object |
None]]) –

• id (str | None) –

• param (Any | None) –

• errors (ErrorsMode | None) –

• timeout (float | None) –

• retries (int | None) –

• backoff (float | None) –

• labels (Mapping[str, str | MetaFilterToken | Callable[[...], bool]] |
None) –

• annotations (Mapping[str, str | MetaFilterToken | Callable[[...],
bool]] | None) –

• when (Callable[[...], bool] | None) –

46.1.3 kopf.testing module

Helper tools to test the Kopf-based operators.

This module is a part of the framework’s public interface.

class kopf.testing.KopfRunner(*args, reraise=True, timeout=None, registry=None, settings=None,
**kwargs)

Bases: _AbstractKopfRunner

A context manager to run a Kopf-based operator in parallel with the tests.

Usage:

46.1. Submodules 217

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool

Kopf

from kopf.testing import KopfRunner

with KopfRunner(['run', '-A', '--verbose', 'examples/01-minimal/example.py']) as␣
→˓runner:
do something while the operator is running.
time.sleep(3)

assert runner.exit_code == 0
assert runner.exception is None
assert 'And here we are!' in runner.stdout

All the args & kwargs are passed directly to Click’s invocation method. See: click.testing.CliRunner. All
properties proxy directly to Click’s click.testing.Result object when it is available (i.e. after the context
manager exits).

CLI commands have to be invoked in parallel threads, never in processes:

First, with multiprocessing, they are unable to pickle and pass exceptions (specifically, their traceback objects)
from a child thread (Kopf’s CLI) to the parent thread (pytest).

Second, mocking works within one process (all threads), but not across processes — the mock’s calls (counts,
arrgs) are lost.

Parameters

• args (Any) –

• reraise (bool) –

• timeout (float | None) –

• registry (OperatorRegistry | None) –

• settings (OperatorSettings | None) –

• kwargs (Any) –

property future: Future

property output: str

property stdout: str

property stdout_bytes: bytes

property stderr: str

property stderr_bytes: bytes

property exit_code: int

property exception: BaseException

property exc_info: Tuple[Type[BaseException], BaseException, TracebackType]

218 Chapter 46. kopf package

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/types.html#types.TracebackType

CHAPTER

FORTYSEVEN

VISION

Kubernetes has become a standard de facto for the enterprise infrastructure management, especially for microservice-
based infrastructures.

Kubernetes operators have become a common way to extend Kubernetes with domain objects and domain logic.

At the moment (2018-2019), operators are mostly written in Go and require advanced knowledge both of Go and
Kubernetes internals. This raises the entry barrier to the operator development field.

In a perfect world of Kopf, Kubernetes operators are a commodity, used to build the domain logic on top of Kubernetes
fast and with ease, requiring little or no skills in infrastructure management.

For this, Kopf hides the low-level infrastructure details from the user (i.e. the operator developer), exposing only the
APIs and DSLs needed to express the user’s domain.

Besides, Kopf does this in one of the widely used, easy to learn programming languages: Python.

But Kopf does not go too far in abstracting the Kubernetes internals away: it avoids the introduction of extra entities
and controlling structures (Occam’s Razor, KISS), and most likely it will never have a mapping of Python classes to
Kubernetes resources (like in the ORMs for the relational databases).

219

https://www.google.com/search?q=kubernetes+standard+de+facto&oq=kuerbenetes+standard+de+facto
https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/KISS_principle

Kopf

220 Chapter 47. Vision

CHAPTER

FORTYEIGHT

NAMING

Kopf is an abbreviation either for Kubernetes Operator Pythonic Framework, or for Kubernetes OPerator Framework
— whatever you like more.

“Kopf” also means “head” in German.

It is capitalised in natural language texts:

I like using Kopf to manage my domain in Kubernetes.

It is lower-cased in all system and code references:

pip install kopf
import kopf

221

Kopf

222 Chapter 48. Naming

CHAPTER

FORTYNINE

ALTERNATIVES

49.1 Metacontroller

The closest equivalent of Kopf is Metacontroller. It targets the same goal as Kopf does: to make the development of
Kubernetes operators easy, with no need for in-depth knowledge of Kubernetes or Go.

However, it does that in a different way than Kopf does: with a few YAML files describing the structure of your operator
(besides the custom resource definition), and by wrapping your core domain logic into the Function-as-a-Service or
into the in-cluster HTTP API deployments, which in turn react to the changes in the custom resources.

An operator developer still has to implement the infrastructure of the API calls in these HTTP APIs and/or Lambdas.
The APIs must be reachable from inside the cluster, which means that they must be deployed there.

Kopf, on the other hand, attempts to keep things explicit (as per the Zen of Python: explicit is better than implicit),
keeping the whole operator’s logic in one place, in one syntax (Python).

And, by the way. . .

Not only it is about “explicit is better than implicit”, but also “simple is better than complex”, “flat is better than nested”,
and “readability counts”, which makes Kopf a pythonic framework in the first place, not just written with Python.

Kopf also makes the effort to keep the operator development human-friendly, which means at least the ease of debugging
(e.g. with the breakpoints, running in a local IDE, not in the cloud), the readability of the logs, and other little pleasant
things.

And also Kopf allows to write any arbitrary domain logic of the resources, especially if it spans over long periods
(hours, days if needed), and is not limited to the timeout restrictions of the HTTP APIs with their expectation of nearly-
immediate outcome (i.e. in seconds or milliseconds).

Metacontroller, however, is more mature, 1.5 years older than Kopf, and is backed by Google, who originally developed
Kubernetes itself.

Unlike Kopf, Metacontroller supports the domain logic in any languages due to its language-agnostic nature of HTTP
APIs.

223

https://metacontroller.github.io/metacontroller/
https://www.python.org/dev/peps/pep-0020/

Kopf

49.2 Side8’s k8s-operator

Side8’s k8s-operator is another direct equivalent. It was the initial inspiration for writing Kopf.

Side8’s k8s-operator is written with Python3 and allows to write the domain logic in the apply/delete scripts in any
language. The scripts run locally on the same machine where the controller is running (usually the same pod, or a
developer’s computer).

However, the interaction with the script relies on stdout output and the environment variables as the input, which is
only good if the scripts are written in shell/bash. Writing the complicated domain logic in bash can be troublesome.

The scripts in other languages, such as Python, are supported but require the inner infrastructure logic to parse the
input and to render the output and to perform the logging properly: e.g., so that no single byte of garbage output is
ever printed to stdout, or so that the resulting status is merged with the initial status, etc – which kills the idea of pure
domain logic and no infrastructure logic in the operator codebase.

49.3 CoreOS Operator SDK & Framework

CoreOS Operator SDK is not an operator framework. It is an SDK, i.e. a Software Development Kit, which generates
the skeleton code for the operators-to-be, and users should enrich it with the domain logic code as needed.

CoreOS Operator Framework, of which the abovementioned SDK is a part, is a bigger, more powerful, but very com-
plicated tool for writing operators.

Both are developed purely for Go-based operators. No other languages are supported.

From the CoreOS’es point of view, an operator is a method of packaging and managing a Kubernetes-native application
(presumably of any purpose, such as MySQL, Postgres, Redis, ElasticSearch, etc) with Kubernetes APIs (e.g. the
custom resources of ConfigMaps) and kubectl tooling. They refer to operators as “the runtime that manages this type
of application on Kubernetes.”

Kopf uses a more generic approach, where the operator is the application with the domain logic in it. Managing other
applications inside of Kubernetes is just one special case of such a domain logic, but the operators could also be used
to manage the applications outside of Kubernetes (via their APIs), or to implement the direct actions without any
supplementary applications at all.

See also:

• https://coreos.com/operators

• https://coreos.com/blog/introducing-operator-framework

• https://enterprisersproject.com/article/2019/2/kubernetes-operators-plain-english

224 Chapter 49. Alternatives

https://github.com/side8/k8s-operator
https://github.com/operator-framework/operator-sdk
https://coreos.com/operators/
https://coreos.com/operators
https://coreos.com/blog/introducing-operator-framework
https://enterprisersproject.com/article/2019/2/kubernetes-operators-plain-english

CHAPTER

FIFTY

INDICES AND TABLES

• genindex

• modindex

• search

225

Kopf

226 Chapter 50. Indices and tables

PYTHON MODULE INDEX

k
kopf, 165
kopf.cli, 202
kopf.on, 204
kopf.testing, 217

227

Kopf

228 Python Module Index

INDEX

Symbols
-A

command line option, 124
--all-namespaces

command line option, 124
--debug

command line option, 123
--dev

command line option, 125
--liveness

command line option, 124
--log-format

command line option, 123
--log-prefix

command line option, 123
--log-refkey

command line option, 123
--module

command line option, 123
--namespace

command line option, 124
--no-log-prefix

command line option, 123
--peering

command line option, 124
--priority

command line option, 124
--quiet

command line option, 123
--standalone

command line option, 124
--verbose

command line option, 123
-m

command line option, 123
-n

command line option, 124

A
ADD (kopf.DiffOperation attribute), 199
addr (kopf.WebhookAutoTunnel attribute), 185
addr (kopf.WebhookNgrokTunnel attribute), 183

addr (kopf.WebhookServer attribute), 180
admission (kopf.OperatorSettings attribute), 186
AdmissionError, 178
adopt() (in module kopf), 175
all_() (in module kopf), 176
annotations

kwarg, 46
annotations (kopf.Meta property), 196
AnnotationsDiffBaseStorage (class in kopf), 187
AnnotationsProgressStorage (class in kopf), 191
any_() (in module kopf), 176
apiVersion (kopf.ObjectReference attribute), 196
apiVersion (kopf.OwnerReference attribute), 197
apiVersion (kopf.RawBody attribute), 195
append_owner_reference() (in module kopf), 177
as_json_patch() (kopf.Patch method), 200

B
background (kopf.OperatorSettings attribute), 186
batching (kopf.OperatorSettings attribute), 186
binary (kopf.WebhookNgrokTunnel attribute), 183
blockOwnerDeletion (kopf.OwnerReference attribute),

197
body

kwarg, 46
Body (class in kopf), 196
BodyEssence (class in kopf), 196
build() (kopf.AnnotationsDiffBaseStorage method), 188
build() (kopf.DiffBaseStorage method), 187
build() (kopf.MultiDiffBaseStorage method), 189
build() (kopf.StatusDiffBaseStorage method), 188
build_certificate() (kopf.WebhookServer static

method), 181
build_object_reference() (in module kopf), 176
build_owner_reference() (in module kopf), 177

C
ca_data (kopf.ConnectionInfo attribute), 171
ca_path (kopf.ConnectionInfo attribute), 171
caBundle (kopf.WebhookClientConfig attribute), 178
cadata (kopf.WebhookServer attribute), 180
cadump (kopf.WebhookServer attribute), 180

229

Kopf

cafile (kopf.WebhookServer attribute), 180
categories (kopf.Resource attribute), 201
certfile (kopf.WebhookServer attribute), 180
certificate_data (kopf.ConnectionInfo attribute), 171
certificate_path (kopf.ConnectionInfo attribute), 171
CHANGE (kopf.DiffOperation attribute), 199
cleanup() (in module kopf.on), 204
clear() (kopf.AnnotationsProgressStorage method), 193
clear() (kopf.MultiProgressStorage method), 195
clear() (kopf.ProgressStorage method), 191
clear() (kopf.StatusProgressStorage method), 194
CLIControls (class in kopf.cli), 202
command line option

-A, 124
--all-namespaces, 124
--debug, 123
--dev, 125
--liveness, 124
--log-format, 123
--log-prefix, 123
--log-refkey, 123
--module, 123
--namespace, 124
--no-log-prefix, 123
--peering, 124
--priority, 124
--quiet, 123
--standalone, 124
--verbose, 123
-m, 123
-n, 124

configure() (in module kopf), 169
ConnectionInfo (class in kopf), 170
context (kopf.WebhookServer attribute), 180
controller (kopf.OwnerReference attribute), 197
convert() (kopf.cli.LogFormatParamType method), 203
CREATE (kopf.Reason attribute), 200
create() (in module kopf.on), 208
creation_timestamp (kopf.Meta property), 196

D
daemon() (in module kopf), 166
daemon() (in module kopf.on), 213
DAEMON_ABANDONED (kopf.DaemonStoppingReason at-

tribute), 201
DAEMON_CANCELLED (kopf.DaemonStoppingReason at-

tribute), 201
DAEMON_SIGNALLED (kopf.DaemonStoppingReason at-

tribute), 201
DaemonStoppingReason (class in kopf), 200
DEFAULT_HOST (kopf.WebhookK3dServer attribute), 182
DEFAULT_HOST (kopf.WebhookMinikubeServer at-

tribute), 182
DEFAULT_HOST (kopf.WebhookServer attribute), 180

default_namespace (kopf.ConnectionInfo attribute),
171

delayed (kopf.ProgressRecord attribute), 190
DELETE (kopf.Reason attribute), 200
delete() (in module kopf.on), 210
deletion_timestamp (kopf.Meta property), 196
diff

kwarg, 48
Diff (class in kopf), 199
DiffBaseStorage (class in kopf), 186
DiffItem (class in kopf), 199
DiffOperation (class in kopf), 199
DONE (kopf.DaemonStoppingReason attribute), 200
dryrun

kwarg, 49

E
ErrorsMode (class in kopf), 177
event

kwarg, 48
event() (in module kopf), 171
event() (in module kopf.on), 213
exc_info (kopf.testing.KopfRunner property), 218
exception (kopf.testing.KopfRunner property), 218
exception() (in module kopf), 172
execute() (in module kopf), 166
execution (kopf.OperatorSettings attribute), 186
exit_code (kopf.testing.KopfRunner property), 218
expiration (kopf.ConnectionInfo attribute), 171
extra_sans (kopf.WebhookServer attribute), 180

F
failure (kopf.ProgressRecord attribute), 190
fetch() (kopf.AnnotationsDiffBaseStorage method), 188
fetch() (kopf.AnnotationsProgressStorage method), 192
fetch() (kopf.DiffBaseStorage method), 187
fetch() (kopf.MultiDiffBaseStorage method), 190
fetch() (kopf.MultiProgressStorage method), 194
fetch() (kopf.ProgressStorage method), 191
fetch() (kopf.StatusDiffBaseStorage method), 189
fetch() (kopf.StatusProgressStorage method), 193
field (kopf.DiffItem attribute), 199
field (kopf.StatusDiffBaseStorage property), 188
field (kopf.StatusProgressStorage property), 193
field() (in module kopf.on), 211
FILTERS_MISMATCH (kopf.DaemonStoppingReason at-

tribute), 200
flush() (kopf.ProgressStorage method), 191
FREE (kopf.Reason attribute), 200
FULL (kopf.LogFormat attribute), 169
future (kopf.testing.KopfRunner property), 218

G
get_default_lifecycle() (in module kopf), 176

230 Index

Kopf

get_default_registry() (in module kopf), 185
get_url() (kopf.Resource method), 202
GONE (kopf.Reason attribute), 200
group (kopf.Resource attribute), 201
groups (kopf.UserInfo attribute), 179

H
HandlerRetriesError, 185
HandlerTimeoutError, 185
headers

kwarg, 50
host (kopf.WebhookServer attribute), 180

I
IGNORED (kopf.ErrorsMode attribute), 178
Index (class in kopf), 197
index() (in module kopf), 168
index() (in module kopf.on), 212
indexes

kwarg, 47
indices

kwarg, 47
info() (in module kopf), 172
insecure (kopf.ConnectionInfo attribute), 171
insecure (kopf.WebhookServer attribute), 180

J
JSON (kopf.LogFormat attribute), 169

K
kind (kopf.ObjectReference attribute), 196
kind (kopf.OwnerReference attribute), 197
kind (kopf.RawBody attribute), 195
kind (kopf.Resource attribute), 201
kopf

module, 165
kopf.cli

module, 202
kopf.on

module, 204
kopf.testing

module, 217
KopfRunner (class in kopf.testing), 217
kwarg

annotations, 46
body, 46
diff, 48
dryrun, 49
event, 48
headers, 50
indexes, 47
indices, 47
kwargs, 45

labels, 46
logger, 47
memo, 47
meta, 46
name, 46
namespace, 46
new, 48
old, 48
param, 45
patch, 47
reason, 48
resource, 46
retry, 45
runtime, 45
settings, 46
spec, 46
sslpeer, 50
started, 45
status, 46
stopped, 49
subresource, 49
uid, 46
userinfo, 49
warnings, 49

kwargs
kwarg, 45

L
label() (in module kopf), 175
labels

kwarg, 46
labels (kopf.Meta property), 196
LocalObjectLogger (class in kopf), 198
log() (kopf.LocalObjectLogger method), 199
LogFormat (class in kopf), 169
LogFormatParamType (class in kopf.cli), 203
logger

kwarg, 47
logging_options() (in module kopf.cli), 203
login() (in module kopf.on), 204
login_via_client() (in module kopf), 170
login_via_pykube() (in module kopf), 169
login_with_kubeconfig() (in module kopf), 170
login_with_service_account() (in module kopf),

170
LoginError, 170
loop (kopf.cli.CLIControls attribute), 203

M
memo

kwarg, 47
Memo (class in kopf), 197
message (kopf.ProgressRecord attribute), 190
meta

Index 231

Kopf

kwarg, 46
Meta (class in kopf), 196
meta (kopf.Body property), 196
meta (kopf.Patch property), 200
metadata (kopf.Body property), 196
metadata (kopf.BodyEssence attribute), 196
metadata (kopf.Patch property), 200
metadata (kopf.RawBody attribute), 195
module

kopf, 165
kopf.cli, 202
kopf.on, 204
kopf.testing, 217

MultiDiffBaseStorage (class in kopf), 189
MultiProgressStorage (class in kopf), 194
mutate() (in module kopf.on), 206

N
name

kwarg, 46
name (kopf.Meta property), 196
name (kopf.ObjectReference attribute), 197
name (kopf.OwnerReference attribute), 197
name (kopf.WebhookClientConfigService attribute), 178
namespace

kwarg, 46
namespace (kopf.Meta property), 196
namespace (kopf.ObjectReference attribute), 197
namespace (kopf.WebhookClientConfigService at-

tribute), 178
namespaced (kopf.Resource attribute), 202
networking (kopf.OperatorSettings attribute), 186
new

kwarg, 48
new (kopf.DiffItem attribute), 199
none_() (in module kopf), 176
NOOP (kopf.Reason attribute), 200
not_() (in module kopf), 176

O
object (kopf.RawEvent attribute), 195
ObjectLogger (class in kopf), 198
ObjectReference (class in kopf), 196
old

kwarg, 48
old (kopf.DiffItem attribute), 199
op (kopf.DiffItem property), 199
operation (kopf.DiffItem attribute), 199
operator() (in module kopf), 173
OPERATOR_EXITING (kopf.DaemonStoppingReason at-

tribute), 200
OPERATOR_PAUSING (kopf.DaemonStoppingReason at-

tribute), 200
OperatorRegistry (class in kopf), 185

OperatorSettings (class in kopf), 186
output (kopf.testing.KopfRunner property), 218
OwnerReference (class in kopf), 197

P
param

kwarg, 45
password (kopf.ConnectionInfo attribute), 171
password (kopf.WebhookServer attribute), 180
patch

kwarg, 47
Patch (class in kopf), 200
path (kopf.WebhookAutoTunnel attribute), 185
path (kopf.WebhookClientConfigService attribute), 178
path (kopf.WebhookNgrokTunnel attribute), 183
path (kopf.WebhookServer attribute), 180
peering (kopf.OperatorSettings attribute), 186
PERMANENT (kopf.ErrorsMode attribute), 178
PermanentError, 185
persistence (kopf.OperatorSettings attribute), 186
pkeyfile (kopf.WebhookServer attribute), 180
PLAIN (kopf.LogFormat attribute), 169
plural (kopf.Resource attribute), 201
port (kopf.WebhookAutoTunnel attribute), 185
port (kopf.WebhookClientConfigService attribute), 178
port (kopf.WebhookNgrokTunnel attribute), 183
port (kopf.WebhookServer attribute), 180
posting (kopf.OperatorSettings attribute), 186
preferred (kopf.Resource attribute), 202
priority (kopf.ConnectionInfo attribute), 171
private_key_data (kopf.ConnectionInfo attribute), 171
private_key_path (kopf.ConnectionInfo attribute), 171
probe() (in module kopf.on), 205
process (kopf.OperatorSettings attribute), 186
process() (kopf.ObjectLogger method), 198
ProgressRecord (class in kopf), 190
ProgressStorage (class in kopf), 190
purge() (kopf.AnnotationsProgressStorage method), 192
purge() (kopf.MultiProgressStorage method), 194
purge() (kopf.ProgressStorage method), 191
purge() (kopf.StatusProgressStorage method), 193
purpose (kopf.ProgressRecord attribute), 190

R
RawBody (class in kopf), 195
RawEvent (class in kopf), 195
ready_flag (kopf.cli.CLIControls attribute), 203
reason

kwarg, 48
Reason (class in kopf), 199
region (kopf.WebhookNgrokTunnel attribute), 183
register() (in module kopf), 165
register() (in module kopf.on), 216
registry (kopf.cli.CLIControls attribute), 203

232 Index

Kopf

REMOVE (kopf.DiffOperation attribute), 199
remove_owner_reference() (in module kopf), 177
resource

kwarg, 46
Resource (class in kopf), 201
RESOURCE_DELETED (kopf.DaemonStoppingReason at-

tribute), 200
RESUME (kopf.Reason attribute), 200
resume() (in module kopf.on), 207
retries (kopf.ProgressRecord attribute), 190
retry

kwarg, 45
run() (in module kopf), 174
run_tasks() (in module kopf), 173
runtime

kwarg, 45

S
scanning (kopf.OperatorSettings attribute), 186
scheme (kopf.ConnectionInfo attribute), 171
server (kopf.ConnectionInfo attribute), 171
service (kopf.WebhookClientConfig attribute), 178
set_default_lifecycle() (in module kopf), 176
set_default_registry() (in module kopf), 185
settings

kwarg, 46
settings (kopf.cli.CLIControls attribute), 203
shortcuts (kopf.Resource attribute), 201
singular (kopf.Resource attribute), 201
SmartProgressStorage (class in kopf), 195
spawn_tasks() (in module kopf), 172
spec

kwarg, 46
Spec (class in kopf), 196
spec (kopf.Body property), 196
spec (kopf.BodyEssence attribute), 196
spec (kopf.Patch property), 200
spec (kopf.RawBody attribute), 195
sslpeer

kwarg, 50
started

kwarg, 45
started (kopf.ProgressRecord attribute), 190
startup() (in module kopf.on), 204
status

kwarg, 46
Status (class in kopf), 196
status (kopf.Body property), 196
status (kopf.BodyEssence attribute), 196
status (kopf.Patch property), 200
status (kopf.RawBody attribute), 195
StatusDiffBaseStorage (class in kopf), 188
StatusProgressStorage (class in kopf), 193
stderr (kopf.testing.KopfRunner property), 218

stderr_bytes (kopf.testing.KopfRunner property), 218
stdout (kopf.testing.KopfRunner property), 218
stdout_bytes (kopf.testing.KopfRunner property), 218
stop_flag (kopf.cli.CLIControls attribute), 203
stopped

kwarg, 49
stopped (kopf.ProgressRecord attribute), 190
Store (class in kopf), 197
store() (kopf.AnnotationsDiffBaseStorage method), 188
store() (kopf.AnnotationsProgressStorage method), 192
store() (kopf.DiffBaseStorage method), 187
store() (kopf.MultiDiffBaseStorage method), 190
store() (kopf.MultiProgressStorage method), 194
store() (kopf.ProgressStorage method), 191
store() (kopf.StatusDiffBaseStorage method), 189
store() (kopf.StatusProgressStorage method), 193
subhandler() (in module kopf.on), 215
subrefs (kopf.ProgressRecord attribute), 190
subresource

kwarg, 49
subresources (kopf.Resource attribute), 202
success (kopf.ProgressRecord attribute), 190

T
TEMPORARY (kopf.ErrorsMode attribute), 178
TemporaryError, 185
timer() (in module kopf), 167
timer() (in module kopf.on), 214
token (kopf.ConnectionInfo attribute), 171
token (kopf.WebhookNgrokTunnel attribute), 183
touch() (kopf.AnnotationsProgressStorage method), 192
touch() (kopf.MultiProgressStorage method), 195
touch() (kopf.ProgressStorage method), 191
touch() (kopf.StatusProgressStorage method), 194
touch_field (kopf.StatusProgressStorage property),

193
type (kopf.RawEvent attribute), 195

U
uid

kwarg, 46
uid (kopf.Meta property), 196
uid (kopf.ObjectReference attribute), 197
uid (kopf.OwnerReference attribute), 197
uid (kopf.UserInfo attribute), 179
UPDATE (kopf.Reason attribute), 200
update() (in module kopf.on), 209
url (kopf.WebhookClientConfig attribute), 178
userinfo

kwarg, 49
UserInfo (class in kopf), 178
username (kopf.ConnectionInfo attribute), 171
username (kopf.UserInfo attribute), 179

Index 233

Kopf

V
validate() (in module kopf.on), 205
vault (kopf.cli.CLIControls attribute), 203
verbs (kopf.Resource attribute), 202
verify_cadata (kopf.WebhookServer attribute), 181
verify_cafile (kopf.WebhookServer attribute), 180
verify_capath (kopf.WebhookServer attribute), 180
verify_mode (kopf.WebhookServer attribute), 180
version (kopf.Resource attribute), 201

W
warn() (in module kopf), 172
warnings

kwarg, 49
watching (kopf.OperatorSettings attribute), 186
WebhookAutoServer (class in kopf), 183
WebhookAutoTunnel (class in kopf), 184
WebhookClientConfig (class in kopf), 178
WebhookClientConfigService (class in kopf), 178
WebhookFn (class in kopf), 179
WebhookK3dServer (class in kopf), 181
WebhookMinikubeServer (class in kopf), 182
WebhookNgrokTunnel (class in kopf), 183
WebhookServer (class in kopf), 179

234 Index

	Installation
	Concepts
	Sample Problem
	Problem Statement
	Problem Solution

	Environment Setup
	Custom Resources
	Custom Resource Definition
	Custom Resource Objects

	Starting the operator
	Creating the objects
	Updating the objects
	Diffing the fields
	Old & New
	Diffs

	Cascaded deletion
	Cleanup
	Handlers
	Events & Causes
	Registering
	Event-watching handlers
	State-changing handlers
	Resuming handlers
	Field handlers
	Sub-handlers

	Daemons
	Spawning
	Termination
	Timeouts
	Safe sleep
	Postponing
	Restarting
	Deletion prevention
	Resource fields access
	Results delivery
	Error handling
	Filtering
	System resources

	Timers
	Intervals
	Sharpness
	Idling
	Postponing
	Combined timing
	Errors in timers
	Results delivery
	Filtering
	System resources

	Arguments
	Forward compatibility kwargs
	Retrying and timing
	Parametrization
	Operator configuration
	Resource-related kwargs
	Body parts
	Logging
	Patching
	In-memory container
	In-memory indices

	Resource-watching kwargs
	API event

	Resource-changing kwargs
	Causation
	Diffing

	Resource daemon kwargs
	Stop-flag

	Resource admission kwargs
	Dry run
	Subresources
	Admission warnings
	User information
	Request credentials

	Async/Await
	Loading and importing
	Resource specification
	Filtering
	Metadata filters
	Field filters
	Change filters
	Value callbacks
	Callback filters
	Callback helpers
	Stealth mode

	Results delivery
	Error handling
	Temporary errors
	Permanent errors
	Regular errors
	Timeouts
	Retries
	Backoff

	Scopes
	Namespaces
	Cluster-wide

	In-memory containers
	Resource memos
	Operator memos
	Custom memo classes
	Limitations

	In-memory indexing
	Index declaration
	Index structure
	Index content
	Recipes
	Unindexed collections
	Enumerating resources
	Mirroring resources
	Indices of indices

	Conditional indexing
	Errors in indexing
	Kwargs safety
	Performance
	Guarantees
	Limitations

	Admission control
	Dependencies
	Validation handlers
	Mutation handlers
	Handler options
	In-memory containers
	Admission warnings
	Admission errors
	Webhook management
	Servers and tunnels
	Authenticate apiservers
	Debugging with SSL
	Custom servers/tunnels
	System resource cleanup

	Startup
	Shutdown
	Health-checks
	Liveness endpoints
	Kubernetes probing
	Probe handlers

	Authentication
	Custom authentication
	Piggybacking
	Credentials lifecycle

	Configuration
	Startup configuration
	Logging formats and levels
	Logging events
	Synchronous handlers
	Networking timeouts
	Finalizers
	Handling progress
	Change detection
	Storage transition
	Retrying of API errors
	Throttling of unexpected errors

	Peering
	Priorities
	Scopes
	Custom peering
	Standalone mode
	Automatic peering
	Multi-pod operators
	Stealth keep-alive

	Command-line options
	Scripting options
	Logging options
	Scope options
	Probing options
	Peering options
	Development mode

	Events
	Handled objects
	Other objects
	Events for events

	Hierarchies
	Labels
	Nested labels
	Owner references
	Names
	Namespaces
	Adopting
	3rd-party libraries

	Operator testing
	Background runner

	Embedding
	Manual execution
	Manual orchestration
	Custom event loops
	Multiple operators

	Deployment
	Docker image
	Cluster deployment
	RBAC

	Continuity
	Persistence
	Restarts
	Downtime

	Idempotence
	Reconciliation
	Event-driven reactions
	Regularly scheduled timers
	Permanently running daemons
	What to use when?

	Tips & Tricks
	Excluding handlers forever

	Troubleshooting
	kubectl freezes on object deletion

	Minikube
	Contributing
	Git workflow
	Git conventions
	DCO sign-off
	Code style
	Tests
	Reviews

	Architecture
	Layered layout
	Root
	Cogs
	Core
	Kits

	kopf package
	Submodules
	kopf.cli module
	kopf.on module
	kopf.testing module

	Vision
	Naming
	Alternatives
	Metacontroller
	Side8’s k8s-operator
	CoreOS Operator SDK & Framework

	Indices and tables
	Python Module Index
	Index

